"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); /** * Unit tests for confusionMatrix(). */ jasmine_util_1.describeWithFlags('confusionMatrix', jasmine_util_1.ALL_ENVS, function () { // Reference (Python) TensorFlow code: // // ```py // import tensorflow as tf // // tf.enable_eager_execution() // // labels = tf.constant([0, 1, 2, 1, 0]) // predictions = tf.constant([0, 2, 2, 1, 0]) // out = tf.confusion_matrix(labels, predictions, 3) // // print(out) // ``` it('3x3 all cases present in both labels and predictions', function () { return __awaiter(_this, void 0, void 0, function () { var labels, predictions, numClasses, out, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: labels = tf.tensor1d([0, 1, 2, 1, 0], 'int32'); predictions = tf.tensor1d([0, 2, 2, 1, 0], 'int32'); numClasses = 3; out = tf.math.confusionMatrix(labels, predictions, numClasses); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, out.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 0, 0, 0, 1, 1, 0, 0, 1]]); expect(out.dtype).toBe('int32'); expect(out.shape).toEqual([3, 3]); return [2 /*return*/]; } }); }); }); it('float32 arguments are accepted', function () { return __awaiter(_this, void 0, void 0, function () { var labels, predictions, numClasses, out, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: labels = tf.tensor1d([0, 1, 2, 1, 0], 'float32'); predictions = tf.tensor1d([0, 2, 2, 1, 0], 'float32'); numClasses = 3; out = tf.math.confusionMatrix(labels, predictions, numClasses); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, out.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 0, 0, 0, 1, 1, 0, 0, 1]]); expect(out.dtype).toBe('int32'); expect(out.shape).toEqual([3, 3]); return [2 /*return*/]; } }); }); }); // Reference (Python) TensorFlow code: // // ```py // import tensorflow as tf // // tf.enable_eager_execution() // // labels = tf.constant([3, 3, 2, 2, 1, 1, 0, 0]) // predictions = tf.constant([2, 2, 2, 2, 0, 0, 0, 0]) // out = tf.confusion_matrix(labels, predictions, 4) // // print(out) // ``` it('4x4 all cases present in labels, but not predictions', function () { return __awaiter(_this, void 0, void 0, function () { var labels, predictions, numClasses, out, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: labels = tf.tensor1d([3, 3, 2, 2, 1, 1, 0, 0], 'int32'); predictions = tf.tensor1d([2, 2, 2, 2, 0, 0, 0, 0], 'int32'); numClasses = 4; out = tf.math.confusionMatrix(labels, predictions, numClasses); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, out.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0]]); expect(out.dtype).toBe('int32'); expect(out.shape).toEqual([4, 4]); return [2 /*return*/]; } }); }); }); it('4x4 all cases present in predictions, but not labels', function () { return __awaiter(_this, void 0, void 0, function () { var labels, predictions, numClasses, out, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: labels = tf.tensor1d([2, 2, 2, 2, 0, 0, 0, 0], 'int32'); predictions = tf.tensor1d([3, 3, 2, 2, 1, 1, 0, 0], 'int32'); numClasses = 4; out = tf.math.confusionMatrix(labels, predictions, numClasses); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, out.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0]]); expect(out.dtype).toBe('int32'); expect(out.shape).toEqual([4, 4]); return [2 /*return*/]; } }); }); }); it('Plain arrays as inputs', function () { return __awaiter(_this, void 0, void 0, function () { var labels, predictions, numClasses, out, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: labels = [3, 3, 2, 2, 1, 1, 0, 0]; predictions = [2, 2, 2, 2, 0, 0, 0, 0]; numClasses = 4; out = tf.math.confusionMatrix(labels, predictions, numClasses); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, out.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0]]); expect(out.dtype).toBe('int32'); expect(out.shape).toEqual([4, 4]); return [2 /*return*/]; } }); }); }); it('Int32Arrays as inputs', function () { return __awaiter(_this, void 0, void 0, function () { var labels, predictions, numClasses, out, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: labels = new Int32Array([3, 3, 2, 2, 1, 1, 0, 0]); predictions = new Int32Array([2, 2, 2, 2, 0, 0, 0, 0]); numClasses = 4; out = tf.math.confusionMatrix(labels, predictions, numClasses); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, out.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0]]); expect(out.dtype).toBe('int32'); expect(out.shape).toEqual([4, 4]); return [2 /*return*/]; } }); }); }); // Reference (Python) TensorFlow code: // // ```py // import tensorflow as tf // // tf.enable_eager_execution() // // labels = tf.constant([0, 4]) // predictions = tf.constant([4, 0]) // out = tf.confusion_matrix(labels, predictions, 5) // // print(out) // ``` it('5x5 predictions and labels both missing some cases', function () { return __awaiter(_this, void 0, void 0, function () { var labels, predictions, numClasses, out, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: labels = tf.tensor1d([0, 4], 'int32'); predictions = tf.tensor1d([4, 0], 'int32'); numClasses = 5; out = tf.math.confusionMatrix(labels, predictions, numClasses); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, out.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]]); expect(out.dtype).toBe('int32'); expect(out.shape).toEqual([5, 5]); return [2 /*return*/]; } }); }); }); it('Invalid numClasses leads to Error', function () { expect(function () { return tf.math.confusionMatrix(tf.tensor1d([0, 1]), tf.tensor1d([1, 0]), 2.5); }) .toThrowError(/numClasses .* positive integer.* got 2\.5/); }); it('Incorrect tensor rank leads to Error', function () { expect(function () { return tf.math.confusionMatrix( // tslint:disable-next-line:no-any tf.scalar(0), tf.scalar(0), 1); }) .toThrowError(/rank .* 1.*got 0/); expect(function () { // tslint:disable-next-line:no-any return tf.math.confusionMatrix(tf.zeros([3, 3]), tf.zeros([9]), 2); }) .toThrowError(/rank .* 1.*got 2/); expect(function () { // tslint:disable-next-line:no-any return tf.math.confusionMatrix(tf.zeros([9]), tf.zeros([3, 3]), 2); }) .toThrowError(/rank .* 1.*got 2/); }); it('Mismatch in lengths leads to Error', function () { expect( // tslint:disable-next-line:no-any function () { return tf.math.confusionMatrix(tf.zeros([3]), tf.zeros([9]), 2); }) .toThrowError(/Mismatch .* 3 vs.* 9/); }); }); //# sourceMappingURL=confusion_matrix_test.js.map