"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); var engine_1 = require("../engine"); var tensor_util_env_1 = require("../tensor_util_env"); var util = require("../util"); var conv_util = require("./conv_util"); var operation_1 = require("./operation"); /** * Computes a 1D convolution over the input x. * * @param x The input tensor, of rank 3 or rank 2, of shape * `[batch, width, inChannels]`. If rank 2, batch of 1 is assumed. * @param filter The filter, rank 3, of shape * `[filterWidth, inDepth, outDepth]`. * @param stride The number of entries by which the filter is moved right at * each step. * @param pad The type of padding algorithm. * - `same` and stride 1: output will be of same size as input, * regardless of filter size. * - `valid`: output will be smaller than input if filter is larger * than 1x1. * - For more info, see this guide: * [https://www.tensorflow.org/api_guides/python/nn#Convolution]( * https://www.tensorflow.org/api_guides/python/nn#Convolution) * @param dataFormat An optional string from "NWC", "NCW". Defaults to "NWC", * the data is stored in the order of [batch, in_width, in_channels]. Only * "NWC" is currently supported. * @param dilation The dilation rate in which we sample input values in * atrous convolution. Defaults to `1`. If it is greater than 1, then * stride must be `1`. * @param dimRoundingMode The rounding mode used when computing output * dimensions if pad is a number. If none is provided, it will not round * and error if the output is of fractional size. */ /** @doc {heading: 'Operations', subheading: 'Convolution'} */ function conv1d_(x, filter, stride, pad, dataFormat, dilation, dimRoundingMode) { if (dataFormat === void 0) { dataFormat = 'NWC'; } if (dilation === void 0) { dilation = 1; } var $x = tensor_util_env_1.convertToTensor(x, 'x', 'conv1d'); var $filter = tensor_util_env_1.convertToTensor(filter, 'filter', 'conv1d'); var x3D = $x; var reshapedTo3D = false; if ($x.rank === 2) { reshapedTo3D = true; x3D = $x.as3D(1, $x.shape[0], $x.shape[1]); } util.assert(x3D.rank === 3, function () { return "Error in conv1d: input must be rank 3, but got rank " + x3D.rank + "."; }); util.assert($filter.rank === 3, function () { return "Error in conv1d: filter must be rank 3, but got rank " + ($filter.rank + "."); }); if (dimRoundingMode != null) { util.assert(util.isInt(pad), function () { return "Error in conv1d: pad must be an integer when using, " + ("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); }); } util.assert(x3D.shape[2] === $filter.shape[1], function () { return "Error in conv1d: depth of input (" + x3D.shape[2] + ") must match " + ("input depth for filter " + $filter.shape[1] + "."); }); util.assert(conv_util.eitherStridesOrDilationsAreOne(stride, dilation), function () { return 'Error in conv1D: Either stride or dilation must be 1. ' + ("Got stride " + stride + " and dilation '" + dilation + "'"); }); util.assert(dataFormat === 'NWC', function () { return "Error in conv1d: got dataFormat of " + dataFormat + " but only NWC is currently supported."; }); var filter4D = $filter.as4D(1, $filter.shape[0], $filter.shape[1], $filter.shape[2]); var input4D = x3D.as4D(x3D.shape[0], 1, x3D.shape[1], x3D.shape[2]); var strides = [1, stride]; var dilations = [1, dilation]; var conv2dDataFormat = 'NHWC'; var res = exports.conv2d(input4D, filter4D, strides, pad, conv2dDataFormat, dilations, dimRoundingMode); if (reshapedTo3D) { return res.as2D(res.shape[2], res.shape[3]); } return res.as3D(res.shape[0], res.shape[2], res.shape[3]); } /** * Computes a 2D convolution over the input x. * * @param x The input tensor, of rank 4 or rank 3, of shape * `[batch, height, width, inChannels]`. If rank 3, batch of 1 is * assumed. * @param filter The filter, rank 4, of shape * `[filterHeight, filterWidth, inDepth, outDepth]`. * @param strides The strides of the convolution: `[strideHeight, * strideWidth]`. * @param pad The type of padding algorithm. * - `same` and stride 1: output will be of same size as input, * regardless of filter size. * - `valid`: output will be smaller than input if filter is larger * than 1x1. * - For more info, see this guide: * [https://www.tensorflow.org/api_guides/python/nn#Convolution]( * https://www.tensorflow.org/api_guides/python/nn#Convolution) * @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to * "NHWC". Specify the data format of the input and output data. With the * default format "NHWC", the data is stored in the order of: [batch, * height, width, channels]. * @param dilations The dilation rates: `[dilationHeight, dilationWidth]` * in which we sample input values across the height and width dimensions * in atrous convolution. Defaults to `[1, 1]`. If `dilations` is a single * number, then `dilationHeight == dilationWidth`. If it is greater than * 1, then all values of `strides` must be 1. * @param dimRoundingMode The rounding mode used when computing output * dimensions if pad is a number. If none is provided, it will not round * and error if the output is of fractional size. */ /** @doc {heading: 'Operations', subheading: 'Convolution'} */ function conv2d_(x, filter, strides, pad, dataFormat, dilations, dimRoundingMode) { if (dataFormat === void 0) { dataFormat = 'NHWC'; } if (dilations === void 0) { dilations = [1, 1]; } var $x = tensor_util_env_1.convertToTensor(x, 'x', 'conv2d'); var $filter = tensor_util_env_1.convertToTensor(filter, 'filter', 'conv2d'); var x4D = $x; var reshapedTo4D = false; if ($x.rank === 3) { reshapedTo4D = true; x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]); } util.assert(x4D.rank === 4, function () { return "Error in conv2d: input must be rank 4, but got rank " + x4D.rank + "."; }); util.assert($filter.rank === 4, function () { return "Error in conv2d: filter must be rank 4, but got rank " + ($filter.rank + "."); }); if (dimRoundingMode != null) { util.assert(util.isInt(pad), function () { return "Error in conv2d: pad must be an integer when using, " + ("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); }); } var inDepth = dataFormat === 'NHWC' ? x4D.shape[3] : x4D.shape[1]; util.assert(inDepth === $filter.shape[2], function () { return "Error in conv2d: depth of input (" + inDepth + ") must match " + ("input depth for filter " + $filter.shape[2] + "."); }); util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), function () { return 'Error in conv2D: Either strides or dilations must be 1. ' + ("Got strides " + strides + " and dilations '" + dilations + "'"); }); var $dataFormat = conv_util.convertConv2DDataFormat(dataFormat); var convInfo = conv_util.computeConv2DInfo(x4D.shape, $filter.shape, strides, dilations, pad, dimRoundingMode, false, $dataFormat); var grad = function (dy, saved) { var _a = saved, $filter = _a[0], x4D = _a[1]; util.assert(conv_util.tupleValuesAreOne(dilations), function () { return 'Error in gradient of conv2D: dilation rates greater than 1 ' + ("are not yet supported in gradients. Got dilations '" + dilations + "'"); }); return { x: function () { return exports.conv2dDerInput(x4D.shape, dy, $filter, strides, pad, dataFormat); }, filter: function () { return exports.conv2dDerFilter(x4D, dy, $filter.shape, strides, pad, dataFormat); } }; }; var inputsToSave = [$filter, x4D]; var res = engine_1.ENGINE.runKernelFunc(function (backend, save) { var res = backend.conv2d(x4D, $filter, convInfo); save([$filter, x4D]); return res; }, { x: x4D, filter: $filter }, grad, 'Conv2D', convInfo, inputsToSave); if (reshapedTo4D) { return res.as3D(res.shape[1], res.shape[2], res.shape[3]); } return res; } /** * Computes the derivative of the input of a 2D convolution. * * @param xShape The shape of the input: [batch, height, width, inDepth]. * If length of 3, batch of 1 is assumed. * @param dy The derivative of the output, of rank 4 or rank 3 of shape * `[batch, outHeight, outWidth, outDepth]`. If rank 3, batch of 1 is * assumed. * @param filter The filter, rank 4, of shape * `[filterHeight, filterWidth, inDepth, outDepth]`. * @param strides The strides of the convolution: `[strideHeight, * strideWidth]`. * @param pad The type of padding algorithm used: * - `same` and stride 1: output will be of same size as input, * regardless of filter size. * - `valid`: output will be smaller than input if filter is larger * than 1x1. * @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to * "NHWC". Specify the data format of the input and output data. With the * default format "NHWC", the data is stored in the order of: [batch, * height, width, channels]. * @param dimRoundingMode The rounding mode used when computing output * dimensions if pad is a number. If none is provided, it will not round * and error if the output is of fractional size. */ function conv2dDerInput_(xShape, dy, filter, strides, pad, dataFormat, dimRoundingMode) { if (dataFormat === void 0) { dataFormat = 'NHWC'; } util.assert(xShape.length === dy.rank, function () { return "Length of inShape " + ("(" + xShape.length + ") and rank of dy (" + dy.rank + ") must match"); }); var xShape4D = xShape; var dy4D = dy; var reshapedTo4D = false; if (dy.rank === 3) { reshapedTo4D = true; dy4D = dy.as4D(1, dy.shape[0], dy.shape[1], dy.shape[2]); xShape4D = [1, xShape[0], xShape[1], xShape[2]]; } util.assert(xShape4D.length === 4, function () { return "Error in conv2dDerInput: inShape must be length 4, but got length " + (xShape4D.length + "."); }); util.assert(dy4D.rank === 4, function () { return "Error in conv2dDerInput: dy must be rank 4, but got " + ("rank " + dy4D.rank); }); util.assert(filter.rank === 4, function () { return "Error in conv2dDerInput: filter must be rank 4, but got " + ("rank " + filter.rank); }); var inDepth = dataFormat === 'NHWC' ? xShape4D[3] : xShape4D[1]; var outDepth = dataFormat === 'NHWC' ? dy4D.shape[3] : dy4D.shape[1]; util.assert(inDepth === filter.shape[2], function () { return "Error in conv2dDerInput: depth of input (" + inDepth + ") must " + ("match input depth for filter " + filter.shape[2] + "."); }); util.assert(outDepth === filter.shape[3], function () { return "Error in conv2dDerInput: depth of output (" + outDepth + ") must " + ("match output depth for filter " + filter.shape[3] + "."); }); if (dimRoundingMode != null) { util.assert(util.isInt(pad), function () { return "Error in conv2dDerInput: pad must be an integer when using, " + ("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); }); } var dilations = 1; var grad = function (ddx, saved) { var filter = saved[0], dy4D = saved[1]; return { dy4D: function () { return exports.conv2d(ddx, filter, strides, pad, dataFormat, dilations, dimRoundingMode); }, filter: function () { return exports.conv2dDerFilter(ddx, dy4D, filter.shape, strides, pad, dataFormat, dimRoundingMode); } }; }; var $dataFormat = conv_util.convertConv2DDataFormat(dataFormat); var convInfo = conv_util.computeConv2DInfo(xShape4D, filter.shape, strides, dilations, pad, dimRoundingMode, false, $dataFormat); var res = engine_1.ENGINE.runKernelFunc(function (backend, save) { var res = backend.conv2dDerInput(dy4D, filter, convInfo); save([filter, dy4D]); return res; }, { dy4D: dy4D, filter: filter }, grad); if (reshapedTo4D) { return res.as3D(res.shape[1], res.shape[2], res.shape[3]); } return res; } /** * Computes the derivative of the filter of a 2D convolution. * * @param x The input tensor, of rank 4 or rank 3 of shape * [batch, height, width, inChannels]. If rank 3, batch of 1 is assumed. * @param dy The dy image, of rank 4 or rank 3, of shape * [batch, height, width, outDepth]. If rank 3, batch of 1 is assumed. * @param filterShape The shape of the filter, length 4, * [filterHeight, filterWidth, inDepth, outDepth]. * @param strides The strides of the convolution: [strideHeight, * strideWidth]. * @param pad A string from: 'same', 'valid'. The type of padding algorithm * used in the forward prop of the op. * @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to * "NHWC". Specify the data format of the input and output data. With the * default format "NHWC", the data is stored in the order of: [batch, * height, width, channels]. * @param dimRoundingMode A string from: 'ceil', 'round', 'floor'. The * rounding mode used when computing output dimensions if pad is a * number. If none is provided, it will not round and error if the output * is of fractional size. */ function conv2dDerFilter_(x, dy, filterShape, strides, pad, dataFormat, dimRoundingMode) { if (dataFormat === void 0) { dataFormat = 'NHWC'; } var x4D = x; if (x.rank === 3) { x4D = x.as4D(1, x.shape[0], x.shape[1], x.shape[2]); } var dy4D = dy; if (dy4D.rank === 3) { dy4D = dy.as4D(1, dy.shape[0], dy.shape[1], dy.shape[2]); } util.assert(x4D.rank === 4, function () { return "Error in conv2dDerFilter: input must be rank 4, but got shape " + (x4D.shape + "."); }); util.assert(dy4D.rank === 4, function () { return "Error in conv2dDerFilter: dy must be rank 4, but got shape " + (dy4D.shape + "."); }); util.assert(filterShape.length === 4, function () { return "Error in conv2dDerFilter: filterShape must be length 4, but got " + (filterShape + "."); }); var inDepth = dataFormat === 'NHWC' ? x4D.shape[3] : x4D.shape[1]; var outDepth = dataFormat === 'NHWC' ? dy4D.shape[3] : dy4D.shape[1]; util.assert(inDepth === filterShape[2], function () { return "Error in conv2dDerFilter: depth of input " + inDepth + ") must " + ("match input depth in filter (" + filterShape[2] + "."); }); util.assert(outDepth === filterShape[3], function () { return "Error in conv2dDerFilter: depth of dy (" + outDepth + ") must " + ("match output depth for filter (" + filterShape[3] + ")."); }); if (dimRoundingMode != null) { util.assert(util.isInt(pad), function () { return "Error in conv2dDerFilter: pad must be an integer when using, " + ("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); }); } var dilations = 1; var $dataFormat = conv_util.convertConv2DDataFormat(dataFormat); var convInfo = conv_util.computeConv2DInfo(x4D.shape, filterShape, strides, dilations, pad, dimRoundingMode, false, $dataFormat); return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.conv2dDerFilter(x4D, dy4D, convInfo); }, { x4D: x4D, dy4D: dy4D }); } /** * Computes the transposed 2D convolution of an image, also known as a * deconvolution. * * @param x The input image, of rank 4 or rank 3, of shape * `[batch, height, width, inDepth]`. If rank 3, batch of 1 is assumed. * @param filter The filter, rank 4, of shape * `[filterHeight, filterWidth, outDepth, inDepth]`. * `inDepth` must match `inDepth` in `x`. * @param outputShape Output shape, of rank 4 or rank 3: * `[batch, height, width, outDepth]`. If rank 3, batch of 1 is assumed. * @param strides The strides of the original convolution: * `[strideHeight, strideWidth]`. * @param pad The type of padding algorithm used in the non-transpose version * of the op. * @param dimRoundingMode The rounding mode used when computing output * dimensions if pad is a number. If none is provided, it will not round * and error if the output is of fractional size. */ /** @doc {heading: 'Operations', subheading: 'Convolution'} */ function conv2dTranspose_(x, filter, outputShape, strides, pad, dimRoundingMode) { var $x = tensor_util_env_1.convertToTensor(x, 'x', 'conv2dTranspose'); var $filter = tensor_util_env_1.convertToTensor(filter, 'filter', 'conv2dTranspose'); return conv2dDerInput_(outputShape, $x, $filter, strides, pad, 'NHWC', dimRoundingMode); } /** * Depthwise 2D convolution. * * Given a 4D `input` array and a `filter` array of shape * `[filterHeight, filterWidth, inChannels, channelMultiplier]` containing * `inChannels` convolutional filters of depth 1, this op applies a * different filter to each input channel (expanding from 1 channel to * `channelMultiplier` channels for each), then concatenates the results * together. The output has `inChannels * channelMultiplier` channels. * * See * [https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d]( * https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d) * for more details. * * @param x The input tensor, of rank 4 or rank 3, of shape * `[batch, height, width, inChannels]`. If rank 3, batch of 1 is * assumed. * @param filter The filter tensor, rank 4, of shape * `[filterHeight, filterWidth, inChannels, channelMultiplier]`. * @param strides The strides of the convolution: `[strideHeight, * strideWidth]`. If strides is a single number, then `strideHeight == * strideWidth`. * @param pad The type of padding algorithm. * - `same` and stride 1: output will be of same size as input, * regardless of filter size. * - `valid`: output will be smaller than input if filter is larger * than 1x1. * - For more info, see this guide: * [https://www.tensorflow.org/api_guides/python/nn#Convolution]( * https://www.tensorflow.org/api_guides/python/nn#Convolution) * @param dilations The dilation rates: `[dilationHeight, dilationWidth]` * in which we sample input values across the height and width dimensions * in atrous convolution. Defaults to `[1, 1]`. If `rate` is a single * number, then `dilationHeight == dilationWidth`. If it is greater than * 1, then all values of `strides` must be 1. * @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to * "NHWC". Specify the data format of the input and output data. With the * default format "NHWC", the data is stored in the order of: [batch, * height, width, channels]. Only "NHWC" is currently supported. * @param dimRoundingMode The rounding mode used when computing output * dimensions if pad is a number. If none is provided, it will not round * and error if the output is of fractional size. */ /** @doc {heading: 'Operations', subheading: 'Convolution'} */ function depthwiseConv2d_(x, filter, strides, pad, dataFormat, dilations, dimRoundingMode) { if (dataFormat === void 0) { dataFormat = 'NHWC'; } if (dilations === void 0) { dilations = [1, 1]; } var $x = tensor_util_env_1.convertToTensor(x, 'x', 'depthwiseConv2d'); var $filter = tensor_util_env_1.convertToTensor(filter, 'filter', 'depthwiseConv2d'); var x4D = $x; var reshapedTo4D = false; if ($x.rank === 3) { reshapedTo4D = true; x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]); } util.assert(x4D.rank === 4, function () { return "Error in depthwiseConv2d: input must be rank 4, but got " + ("rank " + x4D.rank + "."); }); util.assert($filter.rank === 4, function () { return "Error in depthwiseConv2d: filter must be rank 4, but got rank " + ($filter.rank + "."); }); util.assert(x4D.shape[3] === $filter.shape[2], function () { return "Error in depthwiseConv2d: number of input channels " + ("(" + x4D.shape[3] + ") must match the inChannels dimension in ") + ("filter " + $filter.shape[2] + "."); }); if (dilations == null) { dilations = [1, 1]; } util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), function () { return 'Error in depthwiseConv2d: Either strides or dilations must be 1. ' + ("Got strides " + strides + " and dilations '" + dilations + "'"); }); if (dimRoundingMode != null) { util.assert(util.isInt(pad), function () { return "Error in depthwiseConv2d: pad must be an integer when using, " + ("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); }); } var convInfo = conv_util.computeConv2DInfo(x4D.shape, $filter.shape, strides, dilations, pad, dimRoundingMode, true /* depthwise */); var grad = function (dy, saved) { util.assert(conv_util.tupleValuesAreOne(dilations), function () { return 'Error in gradient of depthwiseConv2d: dilation rates ' + "greater than 1 are not yet supported. Got dilations " + ("'" + dilations + "'"); }); var x4D = saved[0], $filter = saved[1]; return { x: function () { return exports.depthwiseConv2dDerInput(x4D.shape, dy, $filter, convInfo); }, filter: function () { return exports.depthwiseConv2dDerFilter(x4D, dy, $filter.shape, convInfo); }, }; }; var inputsToSave = [x4D, $filter]; var res = engine_1.ENGINE.runKernelFunc(function (backend, save) { var res = backend.depthwiseConv2D(x4D, $filter, convInfo); save([x4D, $filter]); return res; }, { x: x4D, filter: $filter }, grad, 'DepthwiseConv2dNative', convInfo, inputsToSave); if (reshapedTo4D) { return res.as3D(res.shape[1], res.shape[2], res.shape[3]); } return res; } /** * 2-D convolution with separable filters. * * Performs a depthwise convolution that acts separately on channels followed * by a pointwise convolution that mixes channels. Note that this is * separability between dimensions [1, 2] and 3, not spatial separability * between dimensions 1 and 2. * * See * [https://www.tensorflow.org/api_docs/python/tf/nn/separable_conv2d]( * https://www.tensorflow.org/api_docs/python/tf/nn/separable_conv2d) * for more details. * * @param x The input tensor, of rank 4 or rank 3, of shape * `[batch, height, width, inChannels]`. If rank 3, batch of 1 is * assumed. * @param depthwiseFilter The depthwise filter tensor, rank 4, of shape * `[filterHeight, filterWidth, inChannels, channelMultiplier]`. This is * the filter used in the first step. * @param pointwiseFilter The pointwise filter tensor, rank 4, of shape * `[1, 1, inChannels * channelMultiplier, outChannels]`. This is * the filter used in the second step. * @param strides The strides of the convolution: `[strideHeight, * strideWidth]`. If strides is a single number, then `strideHeight == * strideWidth`. * @param pad The type of padding algorithm. * - `same` and stride 1: output will be of same size as input, * regardless of filter size. * - `valid`: output will be smaller than input if filter is larger * than 1x1. * - For more info, see this guide: * [https://www.tensorflow.org/api_guides/python/nn#Convolution]( * https://www.tensorflow.org/api_guides/python/nn#Convolution) * @param dilations The dilation rates: `[dilationHeight, dilationWidth]` * in which we sample input values across the height and width dimensions * in atrous convolution. Defaults to `[1, 1]`. If `rate` is a single * number, then `dilationHeight == dilationWidth`. If it is greater than * 1, then all values of `strides` must be 1. * @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to * "NHWC". Specify the data format of the input and output data. With the * default format "NHWC", the data is stored in the order of: [batch, * height, width, channels]. Only "NHWC" is currently supported. */ /** @doc {heading: 'Operations', subheading: 'Convolution'} */ function separableConv2d_(x, depthwiseFilter, pointwiseFilter, strides, pad, dilation, dataFormat) { if (dilation === void 0) { dilation = [1, 1]; } if (dataFormat === void 0) { dataFormat = 'NHWC'; } var $x = tensor_util_env_1.convertToTensor(x, 'x', 'separableConv2d'); var $depthwiseFilter = tensor_util_env_1.convertToTensor(depthwiseFilter, 'depthwiseFilter', 'separableConv2d'); var $pointwiseFilter = tensor_util_env_1.convertToTensor(pointwiseFilter, 'pointwiseFilter', 'separableConv2d'); var x4D = $x; var reshapedTo4D = false; if ($x.rank === 3) { reshapedTo4D = true; x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]); } if (dataFormat === 'NCHW') { throw new Error('separableConv2d currently does not support dataFormat NCHW; only ' + 'NHWC is supported'); } util.assert(x4D.rank === 4, function () { return "Error in separableConv2d: input must be rank 4, but got " + ("rank " + x4D.rank + "."); }); util.assert($depthwiseFilter.rank === 4, function () { return "Error in separableConv2d: depthwise filter must be rank 4, but " + ("got rank " + $depthwiseFilter.rank + "."); }); util.assert($pointwiseFilter.rank === 4, function () { return "Error in separableConv2d: pointwise filter must be rank 4, but " + ("got rank " + $depthwiseFilter.rank + "."); }); util.assert($pointwiseFilter.shape[0] === 1, function () { return "Error in separableConv2d: the first dimension of pointwise filter " + (" must be 1, but got " + $pointwiseFilter.shape[0] + "."); }); util.assert($pointwiseFilter.shape[1] === 1, function () { return "Error in separableConv2d: the second dimension of pointwise " + ("filter must be 1, but got " + $pointwiseFilter.shape[1] + "."); }); var inChannels = $depthwiseFilter.shape[2]; var channelMultiplier = $depthwiseFilter.shape[3]; util.assert($pointwiseFilter.shape[2] === inChannels * channelMultiplier, function () { return "Error in separableConv2d: the third dimension of pointwise filter " + ("must be " + inChannels * channelMultiplier + ", ") + ("but got " + $pointwiseFilter.shape[2] + "."); }); var depthwise = exports.depthwiseConv2d(x4D, $depthwiseFilter, strides, pad, dataFormat, dilation); var pointwiseStride = 1; var res = exports.conv2d(depthwise, $pointwiseFilter, pointwiseStride, 'valid', dataFormat); if (reshapedTo4D) { return res.as3D(res.shape[1], res.shape[2], res.shape[3]); } return res; } function parseTupleParam(param) { if (typeof param === 'number') { return [param, param, param]; } if (param.length === 2) { return [param[0], param[1], 1]; } return param; } function tupleValuesAreOne(param) { var _a = parseTupleParam(param), dimA = _a[0], dimB = _a[1], dimC = _a[2]; return dimA === 1 && dimB === 1 && dimC === 1; } function eitherStridesOrDilationsAreOne(strides, dilations) { return tupleValuesAreOne(strides) || tupleValuesAreOne(dilations); } function depthwiseConv2dDerInput_(xShape, dy, filter, convInfo) { var dy4D = dy; var reshapedTo4D = false; if (dy.rank === 3) { reshapedTo4D = true; dy4D = dy.as4D(1, dy.shape[0], dy.shape[1], dy.shape[2]); } var res = engine_1.ENGINE.runKernelFunc(function (backend) { return backend.depthwiseConv2DDerInput(dy4D, filter, convInfo); }, { dy4D: dy4D }); if (reshapedTo4D) { return res.as3D(res.shape[1], res.shape[2], res.shape[3]); } return res; } function depthwiseConv2dDerFilter_(x, dy, filterShape, convInfo) { var x4D = x; if (x.rank === 3) { x4D = x.as4D(1, x.shape[0], x.shape[1], x.shape[2]); } var dy4D = dy; if (dy4D.rank === 3) { dy4D = dy.as4D(1, dy.shape[0], dy.shape[1], dy.shape[2]); } return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.depthwiseConv2DDerFilter(x4D, dy4D, convInfo); }, { x4D: x4D, dy4D: dy4D }); } /** * Computes a 3D convolution over the input x. * * @param x The input tensor, of rank 5 or rank 4, of shape * `[batch, depth, height, width, channels]`. If rank 4, * batch of 1 is assumed. * @param filter The filter, rank 5, of shape * `[filterDepth, filterHeight, filterWidth, inChannels, outChannels]`. * inChannels must match between input and filter. * @param strides The strides of the convolution: `[strideDepth, strideHeight, * strideWidth]`. * @param pad The type of padding algorithm. * - `same` and stride 1: output will be of same size as input, * regardless of filter size. * - `valid`: output will be smaller than input if filter is larger * than 1x1. * - For more info, see this guide: * [https://www.tensorflow.org/api_guides/python/nn#Convolution]( * https://www.tensorflow.org/api_guides/python/nn#Convolution) * @param dataFormat: An optional string from: "NDHWC", "NCDHW". Defaults to * "NDHWC". Specify the data format of the input and output data. With the * default format "NDHWC", the data is stored in the order of: [batch, * depth, height, width, channels]. Only "NDHWC" is currently supported. * @param dilations The dilation rates: `[dilationDepth, dilationHeight, * dilationWidth]` in which we sample input values across the height * and width dimensions in atrous convolution. Defaults to `[1, 1, 1]`. * If `dilations` is a single number, then * `dilationDepth == dilationHeight == dilationWidth`. If it is greater * than 1, then all values of `strides` must be 1. */ /** @doc {heading: 'Operations', subheading: 'Convolution'} */ function conv3d_(x, filter, strides, pad, dataFormat, dilations) { if (dataFormat === void 0) { dataFormat = 'NDHWC'; } if (dilations === void 0) { dilations = [1, 1, 1]; } var $x = tensor_util_env_1.convertToTensor(x, 'x', 'conv3d'); var $filter = tensor_util_env_1.convertToTensor(filter, 'filter', 'conv3d'); var x5D = $x; var reshapedTo5D = false; if ($x.rank === 4) { reshapedTo5D = true; x5D = $x.as5D(1, $x.shape[0], $x.shape[1], $x.shape[2], $x.shape[3]); } util.assert(x5D.rank === 5, function () { return "Error in conv3d: input must be rank 5, but got rank " + x5D.rank + "."; }); util.assert($filter.rank === 5, function () { return "Error in conv3d: filter must be rank 5, but got rank " + ($filter.rank + "."); }); util.assert(x5D.shape[4] === $filter.shape[3], function () { return "Error in conv3d: depth of input (" + x5D.shape[4] + ") must match " + ("input depth for filter " + $filter.shape[3] + "."); }); util.assert(eitherStridesOrDilationsAreOne(strides, dilations), function () { return 'Error in conv3D: Either strides or dilations must be 1. ' + ("Got strides " + strides + " and dilations '" + dilations + "'"); }); util.assert(dataFormat === 'NDHWC', function () { return "Error in conv3d: got dataFormat of " + dataFormat + " but only NDHWC is currently supported."; }); var convInfo = conv_util.computeConv3DInfo(x5D.shape, $filter.shape, strides, dilations, pad); var grad = function (dy, saved) { util.assert(tupleValuesAreOne(dilations), function () { return 'Error in gradient of conv3D: dilation rates greater than 1 are ' + ("not yet supported in gradients. Got dilations '" + dilations + "'"); }); var x5D = saved[0], $filter = saved[1]; return { x: function () { return conv3dDerInput_(x5D.shape, dy, $filter, strides, pad); }, $filter: function () { return conv3dDerFilter_(x5D, dy, $filter.shape, strides, pad); } }; }; var res = engine_1.ENGINE.runKernelFunc(function (backend, save) { var res = backend.conv3d(x5D, $filter, convInfo); save([x5D, $filter]); return res; }, { x: x5D, $filter: $filter }, grad); if (reshapedTo5D) { return res.as4D(res.shape[1], res.shape[2], res.shape[3], res.shape[4]); } return res; } /** * Computes the derivative of the input of a 3D convolution. * * @param xShape The shape of the input: [batch, depth, height, width, * in_channels]. If length of 4, batch of 1 is assumed. * @param dy The derivative of the output, of rank 5 or rank 4 of shape * `[batch, outDepth, outHeight, outWidth, in_channels]`. * If rank 4, batch of 1 is assumed. * @param filter The filter, rank 5, of shape * `[filterDepth, filterHeight, filterWidth, inDepth, outDepth]`. * @param strides The strides of the convolution: `[strideDepth, strideHeight, * strideWidth]`. * @param pad The type of padding algorithm used: * - `same` and stride 1: output will be of same size as input, * regardless of filter size. * - `valid`: output will be smaller than input if filter is larger * than 1x1. */ function conv3dDerInput_(xShape, dy, filter, strides, pad) { util.assert(xShape.length === dy.rank, function () { return "Length of inShape " + ("(" + xShape.length + ") and rank of dy (" + dy.rank + ") must match"); }); var xShape5D = xShape; var dy5D = dy; var reshapedTo5D = false; if (dy.rank === 4) { reshapedTo5D = true; dy5D = dy.as5D(1, dy.shape[0], dy.shape[1], dy.shape[2], dy.shape[3]); xShape5D = [1, xShape[0], xShape[1], xShape[2], xShape[3]]; } var inDepth = xShape5D[4]; var outDepth = dy5D.shape[4]; util.assert(xShape5D.length === 5, function () { return "Error in conv3dDerInput: inShape must be length 5, but got length " + (xShape5D.length + "."); }); util.assert(dy5D.rank === 5, function () { return "Error in conv3dDerInput: dy must be rank 5, but got " + ("rank " + dy5D.rank); }); util.assert(filter.rank === 5, function () { return "Error in conv3dDerInput: filter must be rank 5, but got " + ("rank " + filter.rank); }); util.assert(inDepth === filter.shape[3], function () { return "Error in conv3dDerInput: depth of input (" + inDepth + ") must " + ("match input depth for filter " + filter.shape[3] + "."); }); util.assert(outDepth === filter.shape[4], function () { return "Error in conv3dDerInput: depth of output (" + outDepth + ") must " + ("match output depth for filter " + filter.shape[4] + "."); }); var dilations = 1; var convInfo = conv_util.computeConv3DInfo(xShape5D, filter.shape, strides, dilations, pad); var res = engine_1.ENGINE.runKernelFunc(function (backend) { return backend.conv3dDerInput(dy5D, filter, convInfo); }, { dy5D: dy5D }); if (reshapedTo5D) { return res.as4D(res.shape[1], res.shape[2], res.shape[3], res.shape[4]); } return res; } /** * Computes the derivative of the filter of a 3D convolution. * * @param x The input tensor, of rank 5 or rank 4 of shape * [batch, depth, height, width, inChannels]. If rank 4, batch of 1 is * assumed. * @param dy The dy image, of rank 5 or rank 4, of shape * [batch, depth, height, width, outDepth]. If rank 4, batch of 1 is * assumed. * @param filterShape The shape of the filter, length 5, * [filterDepth, filterHeight, filterWidth, inDepth, outDepth]. * @param strides The strides of the convolution: [strideDepth, strideHeight, * strideWidth]. * @param pad A string from: 'same', 'valid'. The type of padding algorithm * used in the forward prop of the op. */ function conv3dDerFilter_(x, dy, filterShape, strides, pad) { var x5D = x; if (x.rank === 4) { x5D = x.as5D(1, x.shape[0], x.shape[1], x.shape[2], x.shape[3]); } var dy5D = dy; if (dy5D.rank === 4) { dy5D = dy.as5D(1, dy.shape[0], dy.shape[1], dy.shape[2], dy.shape[3]); } util.assert(x5D.rank === 5, function () { return "Error in conv3dDerFilter: input must be rank 5, but got shape " + (x5D.shape + "."); }); util.assert(dy5D.rank === 5, function () { return "Error in conv3dDerFilter: dy must be rank 5, but got shape " + (dy5D.shape + "."); }); util.assert(filterShape.length === 5, function () { return "Error in conv3dDerFilter: filterShape must be length 5, but got " + (filterShape + "."); }); util.assert(x5D.shape[4] === filterShape[3], function () { return "Error in conv3dDerFilter: depth of input " + x5D.shape[4] + ") must " + ("match input depth in filter (" + filterShape[3] + "."); }); util.assert(dy5D.shape[4] === filterShape[4], function () { return "Error in conv3dDerFilter: depth of dy (" + dy5D.shape[4] + ") must " + ("match output depth for filter (" + filterShape[4] + ")."); }); var dilations = 1; var convInfo = conv_util.computeConv3DInfo(x5D.shape, filterShape, strides, dilations, pad); return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.conv3dDerFilter(x5D, dy5D, convInfo); }, { x5D: x5D, dy5D: dy5D }); } /** * Computes the transposed 3D convolution of a volume, also known as a * deconvolution. * * @param x The input image, of rank 5 or rank 4, of shape * `[batch, depth, height, width, inDepth]`. If rank 4, batch of 1 is assumed. * @param filter The filter, rank 4, of shape * `[depth, filterHeight, filterWidth, outDepth, inDepth]`. * `inDepth` must match `inDepth` in `x`. * @param outputShape Output shape, of rank 5 or rank 4: * `[batch, depth, height, width, outDepth]`. If rank 3, batch of 1 is * assumed. * @param strides The strides of the original convolution: * `[strideDepth, strideHeight, strideWidth]`. * @param pad The type of padding algorithm used in the non-transpose version * of the op. */ /** @doc {heading: 'Operations', subheading: 'Convolution'} */ function conv3dTranspose_(x, filter, outputShape, strides, pad) { var $x = tensor_util_env_1.convertToTensor(x, 'x', 'conv3dTranspose'); var $filter = tensor_util_env_1.convertToTensor(filter, 'filter', 'conv3dTranspose'); return conv3dDerInput_(outputShape, $x, $filter, strides, pad); } exports.conv1d = operation_1.op({ conv1d_: conv1d_ }); exports.conv2d = operation_1.op({ conv2d_: conv2d_ }); exports.conv3d = operation_1.op({ conv3d_: conv3d_ }); exports.conv2dDerFilter = operation_1.op({ conv2dDerFilter_: conv2dDerFilter_ }); exports.conv2dDerInput = operation_1.op({ conv2dDerInput_: conv2dDerInput_ }); exports.depthwiseConv2d = operation_1.op({ depthwiseConv2d_: depthwiseConv2d_ }); exports.depthwiseConv2dDerInput = operation_1.op({ depthwiseConv2dDerInput_: depthwiseConv2dDerInput_ }); exports.depthwiseConv2dDerFilter = operation_1.op({ depthwiseConv2dDerFilter_: depthwiseConv2dDerFilter_ }); exports.separableConv2d = operation_1.op({ separableConv2d_: separableConv2d_ }); exports.conv2dTranspose = operation_1.op({ conv2dTranspose_: conv2dTranspose_ }); exports.conv3dTranspose = operation_1.op({ conv3dTranspose_: conv3dTranspose_ }); //# sourceMappingURL=conv.js.map