"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('separableConv2d', jasmine_util_1.ALL_ENVS, function () { it('input=1x3x3x1,f=2,s=1,d=1,p=valid,chMul=1,outDepth=2', function () { return __awaiter(_this, void 0, void 0, function () { var fSize, pad, stride, chMul, inDepth, outDepth, x, depthwiseFilter, pointwiseFilter, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: fSize = 2; pad = 'valid'; stride = 1; chMul = 1; inDepth = 1; outDepth = 2; x = tf.tensor4d([ 0.230664, 0.987388, 0.0685208, 0.419224, 0.887861, 0.731641, 0.0741907, 0.409265, 0.351377 ], [1, 3, 3, inDepth]); depthwiseFilter = tf.tensor4d([0.303873, 0.229223, 0.144333, 0.803373], [fSize, fSize, inDepth, chMul]); pointwiseFilter = tf.tensor4d([0.1, -0.2], [1, 1, inDepth * chMul, outDepth]); result = tf.separableConv2d(x, depthwiseFilter, pointwiseFilter, stride, pad); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 0.10702161, -0.21404321, 0.10316753, -0.20633507, 0.06704096, -0.13408193, 0.07788632, -0.15577264 ]]); expect(result.shape).toEqual([1, 2, 2, outDepth]); return [2 /*return*/]; } }); }); }); it('input=1x3x3x1,f=2,s=1,d=1,p=valid,chMul=1,outDepth=2 in tensor', function () { return __awaiter(_this, void 0, void 0, function () { var fSize, pad, stride, chMul, inDepth, outDepth, x, depthwiseFilter, pointwiseFilter, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: fSize = 2; pad = 'valid'; stride = 1; chMul = 1; inDepth = 1; outDepth = 2; x = tf.tensor4d([ 0.230664, 0.987388, 0.0685208, 0.419224, 0.887861, 0.731641, 0.0741907, 0.409265, 0.351377 ], [1, 3, 3, inDepth]); depthwiseFilter = tf.tensor4d([0.303873, 0.229223, 0.144333, 0.803373], [fSize, fSize, inDepth, chMul]); pointwiseFilter = tf.tensor4d([0.1, -0.2], [1, 1, inDepth * chMul, outDepth]); result = x.separableConv2d(depthwiseFilter, pointwiseFilter, stride, pad); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 0.10702161, -0.21404321, 0.10316753, -0.20633507, 0.06704096, -0.13408193, 0.07788632, -0.15577264 ]]); expect(result.shape).toEqual([1, 2, 2, outDepth]); return [2 /*return*/]; } }); }); }); it('input=1x3x3x1,f=2,s=1,d=1,p=valid,chMul=2,outDepth=2', function () { return __awaiter(_this, void 0, void 0, function () { var fSize, pad, stride, chMul, inDepth, outDepth, x, depthwiseFilter, pointwiseFilter, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: fSize = 2; pad = 'valid'; stride = 1; chMul = 2; inDepth = 1; outDepth = 3; x = tf.tensor4d([ 0.230664, 0.987388, 0.0685208, 0.419224, 0.887861, 0.731641, 0.0741907, 0.409265, 0.351377 ], [1, 3, 3, inDepth]); depthwiseFilter = tf.tensor4d([ 0.303873, 0.229223, 0.144333, 0.803373, -0.303873, -0.229223, -0.144333, -0.803373 ], [fSize, fSize, inDepth, chMul]); pointwiseFilter = tf.tensor4d([0.1, -0.2, -0.1, 0.2, 0.15, 0.15], [1, 1, inDepth * chMul, outDepth]); result = tf.separableConv2d(x, depthwiseFilter, pointwiseFilter, stride, pad); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 0.00305368, 0.0140969, 0.00980358, -0.10853045, -0.06339455, -0.0699412, 0.11010849, 0.0347524, 0.05214475, 0.10307151, 0.02221644, 0.04224815 ]]); expect(result.shape).toEqual([1, 2, 2, outDepth]); return [2 /*return*/]; } }); }); }); it('input=1x3x3x1,f=2,s=1,d=1,p=valid,chMul=1,outDepth=2,3D input', function () { return __awaiter(_this, void 0, void 0, function () { var fSize, pad, stride, chMul, inDepth, outDepth, x, depthwiseFilter, pointwiseFilter, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: fSize = 2; pad = 'valid'; stride = 1; chMul = 1; inDepth = 1; outDepth = 2; x = tf.tensor3d([ 0.230664, 0.987388, 0.0685208, 0.419224, 0.887861, 0.731641, 0.0741907, 0.409265, 0.351377 ], [3, 3, inDepth]); depthwiseFilter = tf.tensor4d([0.303873, 0.229223, 0.144333, 0.803373], [fSize, fSize, inDepth, chMul]); pointwiseFilter = tf.tensor4d([0.1, -0.2], [1, 1, inDepth * chMul, outDepth]); result = tf.separableConv2d(x, depthwiseFilter, pointwiseFilter, stride, pad); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 0.10702161, -0.21404321, 0.10316753, -0.20633507, 0.06704096, -0.13408193, 0.07788632, -0.15577264 ]]); expect(result.shape).toEqual([2, 2, outDepth]); return [2 /*return*/]; } }); }); }); it('input=1x4x4x1,f=2,s=2,d=1,p=valid,chMul=1,outDepth=2', function () { return __awaiter(_this, void 0, void 0, function () { var fSize, pad, stride, chMul, inDepth, outDepth, x, depthwiseFilter, pointwiseFilter, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: fSize = 2; pad = 'valid'; stride = [2, 2]; chMul = 1; inDepth = 1; outDepth = 2; x = tf.tensor4d([ 0.675707, 0.758567, 0.413529, 0.963967, 0.217291, 0.101335, 0.804231, 0.329673, 0.924503, 0.728742, 0.180217, 0.210459, 0.133869, 0.650827, 0.047613, 0.554795 ], [1, 4, 4, inDepth]); depthwiseFilter = tf.tensor4d([0.303873, 0.229223, 0.144333, 0.803373], [fSize, fSize, inDepth, chMul]); pointwiseFilter = tf.tensor4d([0.1, -0.2], [1, 1, inDepth * chMul, outDepth]); result = tf.separableConv2d(x, depthwiseFilter, pointwiseFilter, stride, pad); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 0.04919822, -0.09839644, 0.07275512, -0.14551024, 0.09901544, -0.19803089, 0.05555845, -0.11111691 ]]); expect(result.shape).toEqual([1, 2, 2, outDepth]); return [2 /*return*/]; } }); }); }); it('input=2x4x4x1,f=2,s=2,d=1,p=valid,chMul=1,outDepth=2', function () { return __awaiter(_this, void 0, void 0, function () { var fSize, pad, stride, chMul, inDepth, outDepth, x, depthwiseFilter, pointwiseFilter, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: fSize = 2; pad = 'valid'; stride = [2, 2]; chMul = 1; inDepth = 1; outDepth = 2; x = tf.tensor4d([ 0.675707, 0.758567, 0.413529, 0.963967, 0.217291, 0.101335, 0.804231, 0.329673, 0.924503, 0.728742, 0.180217, 0.210459, 0.133869, 0.650827, 0.047613, 0.554795, -0.675707, -0.758567, -0.413529, -0.963967, -0.217291, -0.101335, -0.804231, -0.329673, -0.924503, -0.728742, -0.180217, -0.210459, -0.133869, -0.650827, -0.047613, -0.554795 ], [2, 4, 4, inDepth]); depthwiseFilter = tf.tensor4d([0.303873, 0.229223, 0.144333, 0.803373], [fSize, fSize, inDepth, chMul]); pointwiseFilter = tf.tensor4d([0.1, -0.2], [1, 1, inDepth * chMul, outDepth]); result = tf.separableConv2d(x, depthwiseFilter, pointwiseFilter, stride, pad); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 0.04919822, -0.09839644, 0.07275512, -0.14551024, 0.09901544, -0.19803089, 0.05555845, -0.11111691, -0.04919822, 0.09839644, -0.07275512, 0.14551024, -0.09901544, 0.19803089, -0.05555845, 0.11111691 ]]); expect(result.shape).toEqual([2, 2, 2, outDepth]); return [2 /*return*/]; } }); }); }); it('input=1x4x4x2,f=2,s=2,d=1,p=valid,chMul=1,outDepth=2', function () { return __awaiter(_this, void 0, void 0, function () { var fSize, pad, stride, chMul, inDepth, outDepth, x, depthwiseFilter, pointwiseFilter, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: fSize = 2; pad = 'valid'; stride = [2, 2]; chMul = 1; inDepth = 2; outDepth = 2; x = tf.tensor4d([ 0.675707, 0.758567, 0.413529, 0.963967, 0.217291, 0.101335, 0.804231, 0.329673, 0.924503, 0.728742, 0.180217, 0.210459, 0.133869, 0.650827, 0.047613, 0.554795, -0.675707, -0.758567, -0.413529, -0.963967, -0.217291, -0.101335, -0.804231, -0.329673, -0.924503, -0.728742, -0.180217, -0.210459, -0.133869, -0.650827, -0.047613, -0.554795 ], [1, 4, 4, inDepth]); depthwiseFilter = tf.tensor4d([ 0.303873, 0.229223, 0.144333, 0.803373, 0.98976838, 0.56597068, 0.42654137, 0.66445535 ], [fSize, fSize, inDepth, chMul]); pointwiseFilter = tf.tensor4d([0.1, -0.2, 0.05, -0.05], [1, 1, inDepth * chMul, outDepth]); result = tf.separableConv2d(x, depthwiseFilter, pointwiseFilter, stride, pad); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 0.20072255, -0.32641545, 0.08474462, -0.11823604, -0.20072255, 0.32641545, -0.08474462, 0.11823604 ]]); expect(result.shape).toEqual([1, 2, 2, outDepth]); return [2 /*return*/]; } }); }); }); it('input=1x4x4x1,f=2,s=1,d=2,p=valid,chMul=1,outDepth=2', function () { return __awaiter(_this, void 0, void 0, function () { var fSize, pad, stride, chMul, inDepth, outDepth, dilationRate, x, depthwiseFilter, pointwiseFilter, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: fSize = 2; pad = 'valid'; stride = 1; chMul = 1; inDepth = 1; outDepth = 2; dilationRate = 2; x = tf.tensor4d([ 0.675707, 0.758567, 0.413529, 0.963967, 0.217291, 0.101335, 0.804231, 0.329673, 0.924503, 0.728742, 0.180217, 0.210459, 0.133869, 0.650827, 0.047613, 0.554795 ], [1, 4, 4, inDepth]); depthwiseFilter = tf.tensor4d([0.303873, 0.229223, 0.144333, 0.803373], [fSize, fSize, inDepth, chMul]); pointwiseFilter = tf.tensor4d([0.1, -0.2], [1, 1, inDepth * chMul, outDepth]); result = tf.separableConv2d(x, depthwiseFilter, pointwiseFilter, stride, pad, dilationRate); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 0.05783373, -0.11566745, 0.07257301, -0.14514601, 0.03079498, -0.06158997, 0.06460048, -0.12920095 ]]); expect(result.shape).toEqual([1, 2, 2, outDepth]); return [2 /*return*/]; } }); }); }); it('input=1x4x4x1,f=2,s=1,d=1,p=same,chMul=1,outDepth=2', function () { return __awaiter(_this, void 0, void 0, function () { var fSize, pad, stride, chMul, inDepth, outDepth, x, depthwiseFilter, pointwiseFilter, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: fSize = 2; pad = 'same'; stride = 1; chMul = 1; inDepth = 1; outDepth = 2; x = tf.tensor4d([ 0.675707, 0.758567, 0.413529, 0.963967, 0.217291, 0.101335, 0.804231, 0.329673, 0.924503, 0.728742, 0.180217, 0.210459, 0.133869, 0.650827, 0.047613, 0.554795 ], [1, 4, 4, inDepth]); depthwiseFilter = tf.tensor4d([0.303873, 0.229223, 0.144333, 0.803373], [fSize, fSize, inDepth, chMul]); pointwiseFilter = tf.tensor4d([0.1, -0.2], [1, 1, inDepth * chMul, outDepth]); result = tf.separableConv2d(x, depthwiseFilter, pointwiseFilter, stride, pad); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 0.04919822, -0.09839644, 0.09860218, -0.19720435, 0.07275512, -0.14551024, 0.03405062, -0.06810125, 0.08081452, -0.16162904, 0.04651042, -0.09302084, 0.05150411, -0.10300821, 0.01305549, -0.02611098, 0.09901544, -0.19803089, 0.03949417, -0.07898834, 0.05555845, -0.11111691, 0.0144028, -0.02880561, 0.01898637, -0.03797274, 0.02086828, -0.04173655, 0.01416401, -0.02832802, 0.01685872, -0.03371745 ]]); expect(result.shape).toEqual([1, 4, 4, outDepth]); return [2 /*return*/]; } }); }); }); it('TensorLike', function () { return __awaiter(_this, void 0, void 0, function () { var pad, stride, outDepth, x, depthwiseFilter, pointwiseFilter, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: pad = 'valid'; stride = 1; outDepth = 2; x = [[ [[0.230664], [0.987388], [0.0685208]], [[0.419224], [0.887861], [0.731641]], [[0.0741907], [0.409265], [0.351377]] ]]; depthwiseFilter = [[[[0.303873]], [[0.229223]]], [[[0.144333]], [[0.803373]]]]; pointwiseFilter = [[[[0.1, -0.2]]]]; result = tf.separableConv2d(x, depthwiseFilter, pointwiseFilter, stride, pad); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 0.10702161, -0.21404321, 0.10316753, -0.20633507, 0.06704096, -0.13408193, 0.07788632, -0.15577264 ]]); expect(result.shape).toEqual([1, 2, 2, outDepth]); return [2 /*return*/]; } }); }); }); it('TensorLike Chained', function () { return __awaiter(_this, void 0, void 0, function () { var pad, stride, outDepth, inDepth, x, depthwiseFilter, pointwiseFilter, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: pad = 'valid'; stride = 1; outDepth = 2; inDepth = 1; x = tf.tensor4d([ 0.230664, 0.987388, 0.0685208, 0.419224, 0.887861, 0.731641, 0.0741907, 0.409265, 0.351377 ], [1, 3, 3, inDepth]); depthwiseFilter = [[[[0.303873]], [[0.229223]]], [[[0.144333]], [[0.803373]]]]; pointwiseFilter = [[[[0.1, -0.2]]]]; result = x.separableConv2d(depthwiseFilter, pointwiseFilter, stride, pad); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 0.10702161, -0.21404321, 0.10316753, -0.20633507, 0.06704096, -0.13408193, 0.07788632, -0.15577264 ]]); expect(result.shape).toEqual([1, 2, 2, outDepth]); return [2 /*return*/]; } }); }); }); it('Incorrect input rank raises error', function () { // tslint:disable-next-line:no-any var x = tf.zeros([4, 4]); var depthwiseFilter = tf.zeros([2, 2, 1, 3]); var pointwiseFilter = tf.zeros([1, 1, 2, 4]); expect(function () { return tf.separableConv2d(x, depthwiseFilter, pointwiseFilter, 1, 'valid'); }) .toThrowError(/rank 4/); }); it('Incorrect depthwise filter rank raises error', function () { var x = tf.zeros([1, 4, 4, 1]); // tslint:disable-next-line:no-any var depthwiseFilter = tf.zeros([2, 2, 1]); var pointwiseFilter = tf.zeros([1, 1, 2, 4]); expect(function () { return tf.separableConv2d(x, depthwiseFilter, pointwiseFilter, 1, 'valid'); }) .toThrowError(/rank 4/); }); it('Incorrect depthwise filter rank raises error', function () { var x = tf.zeros([1, 4, 4, 1]); var depthwiseFilter = tf.zeros([2, 2, 1, 3]); // tslint:disable-next-line:no-any var pointwiseFilter = tf.zeros([1, 1, 2]); expect(function () { return tf.separableConv2d(x, depthwiseFilter, pointwiseFilter, 1, 'valid'); }) .toThrowError(/rank 4/); }); it('Incorrect point filter 1st dimension raises error', function () { var x = tf.zeros([1, 4, 4, 1]); var depthwiseFilter = tf.zeros([2, 2, 1, 3]); var pointwiseFilter = tf.zeros([2, 1, 3, 6]); expect(function () { return tf.separableConv2d(x, depthwiseFilter, pointwiseFilter, 1, 'valid'); }) .toThrowError(/must be 1, but got 2/); }); it('Incorrect point filter 2nd dimension raises error', function () { var x = tf.zeros([1, 4, 4, 1]); var depthwiseFilter = tf.zeros([2, 2, 1, 3]); var pointwiseFilter = tf.zeros([1, 5, 3, 6]); expect(function () { return tf.separableConv2d(x, depthwiseFilter, pointwiseFilter, 1, 'valid'); }) .toThrowError(/must be 1, but got 5/); }); it('Incorrect pointwise filter 3rd dimension raises error', function () { var x = tf.zeros([1, 4, 4, 1]); var depthwiseFilter = tf.zeros([2, 2, 1, 3]); var pointwiseFilter = tf.zeros([1, 1, 4, 6]); expect(function () { return tf.separableConv2d(x, depthwiseFilter, pointwiseFilter, 1, 'valid'); }) .toThrowError(/must be 3, but got 4/); }); it('throws when passed x as a non-tensor', function () { var fSize = 2; var pad = 'valid'; var stride = 1; var chMul = 1; var inDepth = 1; var outDepth = 2; var depthwiseFilter = tf.zeros([fSize, fSize, inDepth, chMul]); var pointwiseFilter = tf.zeros([1, 1, inDepth * chMul, outDepth]); var e = /Argument 'x' passed to 'separableConv2d' must be a Tensor/; expect(function () { return tf.separableConv2d({}, depthwiseFilter, pointwiseFilter, stride, pad); }) .toThrowError(e); }); it('throws when passed depthwiseFilter as a non-tensor', function () { var pad = 'valid'; var stride = 1; var chMul = 1; var inDepth = 1; var outDepth = 2; var x = tf.zeros([1, 3, 3, inDepth]); var pointwiseFilter = tf.zeros([1, 1, inDepth * chMul, outDepth]); var e = new RegExp('Argument \'depthwiseFilter\' passed to \'separableConv2d\'' + ' must be a Tensor'); expect(function () { return tf.separableConv2d(x, {}, pointwiseFilter, stride, pad); }) .toThrowError(e); }); it('throws when passed pointwiseFilter as a non-tensor', function () { var fSize = 2; var pad = 'valid'; var stride = 1; var chMul = 1; var inDepth = 1; var x = tf.zeros([1, 3, 3, inDepth]); var depthwiseFilter = tf.zeros([fSize, fSize, inDepth, chMul]); var e = new RegExp('Argument \'pointwiseFilter\' passed to \'separableConv2d\'' + ' must be a Tensor'); expect(function () { return tf.separableConv2d(x, depthwiseFilter, {}, stride, pad); }) .toThrowError(e); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var pad, stride, outDepth, x, depthwiseFilter, pointwiseFilter, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: pad = 'valid'; stride = 1; outDepth = 2; x = [ [[0.230664], [0.987388], [0.0685208]], [[0.419224], [0.887861], [0.731641]], [[0.0741907], [0.409265], [0.351377]] ]; depthwiseFilter = [[[[0.303873]], [[0.229223]]], [[[0.144333]], [[0.803373]]]]; pointwiseFilter = [[[[0.1, -0.2]]]]; result = tf.separableConv2d(x, depthwiseFilter, pointwiseFilter, stride, pad); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 0.10702161, -0.21404321, 0.10316753, -0.20633507, 0.06704096, -0.13408193, 0.07788632, -0.15577264 ]]); expect(result.shape).toEqual([2, 2, outDepth]); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=conv2d_separable_test.js.map