"use strict"; /** * @license * Copyright 2017 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('conv2dTranspose', jasmine_util_1.ALL_ENVS, function () { it('input=2x2x1,d2=1,f=2,s=1,p=0', function () { return __awaiter(_this, void 0, void 0, function () { var origInputDepth, origOutputDepth, inputShape, fSize, origPad, origStride, x, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: origInputDepth = 1; origOutputDepth = 1; inputShape = [1, 1, origOutputDepth]; fSize = 2; origPad = 0; origStride = 1; x = tf.tensor3d([2], inputShape); w = tf.tensor4d([3, 1, 5, 0], [fSize, fSize, origInputDepth, origOutputDepth]); result = tf.conv2dTranspose(x, w, [2, 2, 1], origStride, origPad); expected = [6, 2, 10, 0]; expect(result.shape).toEqual([2, 2, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('input=2x2x1,d2=1,f=2,s=1,p=0, batch=2', function () { return __awaiter(_this, void 0, void 0, function () { var origInputDepth, origOutputDepth, inputShape, fSize, origPad, origStride, x, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: origInputDepth = 1; origOutputDepth = 1; inputShape = [2, 1, 1, origOutputDepth]; fSize = 2; origPad = 0; origStride = 1; x = tf.tensor4d([2, 3], inputShape); w = tf.tensor4d([3, 1, 5, 0], [fSize, fSize, origInputDepth, origOutputDepth]); result = tf.conv2dTranspose(x, w, [2, 2, 2, 1], origStride, origPad); expected = [6, 2, 10, 0, 9, 3, 15, 0]; expect(result.shape).toEqual([2, 2, 2, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); // Reference (Python) TensorFlow code: // // ```py // import numpy as np // import tensorflow as tf // // tf.enable_eager_execution() // // x = tf.constant(np.array([[ // [[-0.14656299], [0.32942239], [-1.90302866]], // [[-0.06487813], [-2.02637842], [-1.83669377]], // [[0.82650784], [-0.89249092], [0.01207666]] // ]]).astype(np.float32)) // filt = tf.constant(np.array([ // [[[-0.48280062], [1.26770487]], [[-0.83083738], [0.54341856]]], // [[[-0.274904], [0.73111374]], [[2.01885189], [-2.68975237]]] // ]).astype(np.float32)) // // with tf.GradientTape() as g: // g.watch(x) // g.watch(filt) // y = tf.keras.backend.conv2d_transpose(x, filt, [1, 4, 4, 2]) // print(y) // (x_grad, filt_grad) = g.gradient(y, [x, filt]) // // print("x_grad = %s" % x_grad) // print("filt_grad = %s" % filt_grad) // ``` it('gradient with clones input=[1,3,3,1] f=[2,2,2,1] s=1 padding=valid', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, outputDepth, inputShape, filterSize, stride, pad, filterShape, x, filt, grads, dy, _a, xGrad, filtGrad, expectedXGrad, _b, _c, expectedFiltGrad, _d, _e; return __generator(this, function (_f) { switch (_f.label) { case 0: inputDepth = 1; outputDepth = 2; inputShape = [1, 3, 3, inputDepth]; filterSize = 2; stride = 1; pad = 'valid'; filterShape = [filterSize, filterSize, outputDepth, inputDepth]; x = tf.tensor4d([[ [[-0.14656299], [0.32942239], [-1.90302866]], [[-0.06487813], [-2.02637842], [-1.83669377]], [[0.82650784], [-0.89249092], [0.01207666]] ]], inputShape); filt = tf.tensor4d([ [[[-0.48280062], [1.26770487]], [[-0.83083738], [0.54341856]]], [[[-0.274904], [0.73111374]], [[2.01885189], [-2.68975237]]] ], filterShape); grads = tf.grads(function (x, filter) { return tf.conv2dTranspose(x.clone(), filter.clone(), [1, 4, 4, outputDepth], stride, pad) .clone(); }); dy = tf.ones([1, 4, 4, outputDepth]); _a = grads([x, filt], dy), xGrad = _a[0], filtGrad = _a[1]; expectedXGrad = tf.ones([1, 3, 3, 1]).mul(tf.scalar(0.2827947)); _b = test_util_1.expectArraysClose; return [4 /*yield*/, xGrad.data()]; case 1: _c = [_f.sent()]; return [4 /*yield*/, expectedXGrad.data()]; case 2: _b.apply(void 0, _c.concat([_f.sent()])); expectedFiltGrad = tf.ones([2, 2, 2, 1]).mul(tf.scalar(-5.70202599)); _d = test_util_1.expectArraysClose; return [4 /*yield*/, filtGrad.data()]; case 3: _e = [_f.sent()]; return [4 /*yield*/, expectedFiltGrad.data()]; case 4: _d.apply(void 0, _e.concat([_f.sent()])); return [2 /*return*/]; } }); }); }); // Reference (Python) TensorFlow code: // // ```py // import numpy as np // import tensorflow as tf // // tf.enable_eager_execution() // // x = tf.constant(np.array([ // [[[-0.36541713], [-0.53973116]], [[0.01731674], [0.90227772]]] // ]).astype(np.float32)) // filt = tf.constant(np.array([ // [[[-0.01423461], [-1.00267384]], [[1.61163029], [0.66302646]]], // [[[-0.46900087], [-0.78649444]], [[0.87780536], [-0.84551637]]] // ]).astype(np.float32)) // // with tf.GradientTape() as g: // g.watch(x) // g.watch(filt) // y = tf.keras.backend.conv2d_transpose(x, filt, [1, 4, 4, 2], strides=(2, // 2)) print(y) // (x_grad, filt_grad) = g.gradient(y, [x, filt]) // // print("x_grad = %s" % -x_grad) // print("filt_grad = %s" % -filt_grad) // ``` it('gradient input=[1,2,2,1] f=[2,2,2,1] s=[2,2] padding=valid', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, outputDepth, inputShape, filterSize, stride, pad, filterShape, x, filt, grads, dy, _a, xGrad, filtGrad, expectedXGrad, _b, _c, expectedFiltGrad, _d, _e; return __generator(this, function (_f) { switch (_f.label) { case 0: inputDepth = 1; outputDepth = 2; inputShape = [1, 2, 2, inputDepth]; filterSize = 2; stride = [2, 2]; pad = 'valid'; filterShape = [filterSize, filterSize, outputDepth, inputDepth]; x = tf.tensor4d([[[[-0.36541713], [-0.53973116]], [[0.01731674], [0.90227772]]]], inputShape); filt = tf.tensor4d([ [[[-0.01423461], [-1.00267384]], [[1.61163029], [0.66302646]]], [[[-0.46900087], [-0.78649444]], [[0.87780536], [-0.84551637]]] ], filterShape); grads = tf.grads(function (x, filter) { return tf.conv2dTranspose(x, filter, [1, 4, 4, outputDepth], stride, pad); }); dy = tf.ones([1, 4, 4, outputDepth]).mul(tf.scalar(-1)); _a = grads([x, filt], dy), xGrad = _a[0], filtGrad = _a[1]; expectedXGrad = tf.ones([1, 2, 2, 1]).mul(tf.scalar(-0.03454196)); _b = test_util_1.expectArraysClose; return [4 /*yield*/, xGrad.data()]; case 1: _c = [_f.sent()]; return [4 /*yield*/, expectedXGrad.data()]; case 2: _b.apply(void 0, _c.concat([_f.sent()])); expect(xGrad.shape).toEqual([1, 2, 2, 1]); expectedFiltGrad = tf.ones([2, 2, 2, 1]).mul(tf.scalar(-0.01444618)); _d = test_util_1.expectArraysClose; return [4 /*yield*/, filtGrad.data()]; case 3: _e = [_f.sent()]; return [4 /*yield*/, expectedFiltGrad.data()]; case 4: _d.apply(void 0, _e.concat([_f.sent()])); expect(filtGrad.shape).toEqual([2, 2, 2, 1]); return [2 /*return*/]; } }); }); }); // Reference (Python) TensorFlow code: // // ```py // import numpy as np // import tensorflow as tf // // tf.enable_eager_execution() // // x = tf.constant(np.array([[ // [[1.52433065], [-0.77053435], [-0.64562341]], // [[0.77962889], [1.58413887], [-0.25581856]], // [[-0.58966221], [0.05411662], [0.70749138]] // ]]).astype(np.float32)) // filt = tf.constant(np.array([ // [[[0.11178388], [-0.96654977]], [[1.21021296], [0.84121729]]], // [[[0.34968338], [-0.42306114]], [[1.27395733], [-1.09014535]]] // ]).astype(np.float32)) // // with tf.GradientTape() as g: // g.watch(x) // g.watch(filt) // y = tf.keras.backend.conv2d_transpose( // x, filt, [1, 3, 3, 2], strides=(1, 1), padding='same') // (x_grad, filt_grad) = g.gradient(y, [x, filt]) // // print("x_grad = %s" % x_grad) // print("filt_grad = %s" % filt_grad) // ``` it('gradient input=[1,3,3,1] f=[2,2,2,1] s=[1,1] padding=same', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, outputDepth, inputShape, filterSize, stride, pad, filterShape, x, filt, grads, dy, _a, xGrad, filtGrad, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: inputDepth = 1; outputDepth = 2; inputShape = [1, 3, 3, inputDepth]; filterSize = 2; stride = [1, 1]; pad = 'same'; filterShape = [filterSize, filterSize, outputDepth, inputDepth]; x = tf.tensor4d([[ [[1.52433065], [-0.77053435], [-0.64562341]], [[0.77962889], [1.58413887], [-0.25581856]], [[-0.58966221], [0.05411662], [0.70749138]] ]], inputShape); filt = tf.tensor4d([ [[[0.11178388], [-0.96654977]], [[1.21021296], [0.84121729]]], [[[0.34968338], [-0.42306114]], [[1.27395733], [-1.09014535]]] ], filterShape); grads = tf.grads(function (x, filter) { return tf.conv2dTranspose(x, filter, [1, 3, 3, outputDepth], stride, pad); }); dy = tf.ones([1, 3, 3, outputDepth]); _a = grads([x, filt], dy), xGrad = _a[0], filtGrad = _a[1]; _b = test_util_1.expectArraysClose; return [4 /*yield*/, xGrad.array()]; case 1: _b.apply(void 0, [_d.sent(), [[ [[1.30709858], [1.30709858], [-0.92814366]], [[1.30709858], [1.30709858], [-0.92814366]], [[1.19666437], [1.19666437], [-0.85476589]] ]]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, filtGrad.array()]; case 2: _c.apply(void 0, [_d.sent(), [ [[[2.38806788], [2.38806788]], [[2.58201847], [2.58201847]]], [[[2.2161221], [2.2161221]], [[3.11756406], [3.11756406]]] ]]); return [2 /*return*/]; } }); }); }); // Reference (Python) TensorFlow code: // // ```py // import numpy as np // import tensorflow as tf // // tf.enable_eager_execution() // // x = tf.constant(np.array([[ // [[1.52433065], [-0.77053435]], [[0.77962889], [1.58413887]], // ]]).astype(np.float32)) // filt = tf.constant(np.array([ // [[[0.11178388], [-0.96654977]], [[1.21021296], [0.84121729]]], // [[[0.34968338], [-0.42306114]], [[1.27395733], [-1.09014535]]] // ]).astype(np.float32)) // // with tf.GradientTape() as g: // g.watch(x) // g.watch(filt) // y = tf.keras.backend.conv2d_transpose( // x, filt, [1, 3, 3, 2], strides=(2, 2), padding='same') // print(y.shape) // (x_grad, filt_grad) = g.gradient(y, [x, filt]) // // print("x_grad = %s" % x_grad) // print("filt_grad = %s" % filt_grad) // ``` it('gradient input=[1,2,2,2] f=[2,2,2,1] s=[2,2] padding=same', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, outputDepth, inputShape, filterSize, stride, pad, filterShape, x, filt, grads, dy, _a, xGrad, filtGrad, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: inputDepth = 2; outputDepth = 2; inputShape = [1, 2, 2, inputDepth]; filterSize = 2; stride = [2, 2]; pad = 'same'; filterShape = [filterSize, filterSize, outputDepth, inputDepth]; x = tf.tensor4d([[ [[-1.81506593, 1.00900095], [-0.05199118, 0.26311377]], [[-1.18469792, -0.34780521], [2.04971242, -0.65154692]] ]], inputShape); filt = tf.tensor4d([ [ [[0.19529686, -0.79594708], [0.70314057, -0.06081263]], [[0.28724744, 0.88522715], [-0.51824096, -0.97120989]] ], [ [[0.51872197, -1.17569193], [1.28316791, -0.81225092]], [[-0.44221532, 0.70058174], [-0.4849217, 0.03806348]] ] ], filterShape); grads = tf.grads(function (x, filter) { return tf.conv2dTranspose(x, filter, [1, 3, 3, outputDepth], stride, pad); }); dy = tf.ones([1, 3, 3, outputDepth]); _a = grads([x, filt], dy), xGrad = _a[0], filtGrad = _a[1]; _b = test_util_1.expectArraysClose; return [4 /*yield*/, xGrad.data()]; case 1: _b.apply(void 0, [_d.sent(), [ 1.54219678, -2.19204008, 2.70032732, -2.84470257, 0.66744391, -0.94274245, 0.89843743, -0.85675972 ]]); expect(xGrad.shape).toEqual([1, 2, 2, 2]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, filtGrad.data()]; case 2: _c.apply(void 0, [_d.sent(), [ -1.00204261, 0.27276259, -1.00204261, 0.27276259, -2.99976385, 0.66119574, -2.99976385, 0.66119574, -1.86705711, 1.27211472, -1.86705711, 1.27211472, -1.81506593, 1.00900095, -1.81506593, 1.00900095 ]]); expect(filtGrad.shape).toEqual([2, 2, 2, 2]); return [2 /*return*/]; } }); }); }); it('throws when x is not rank 3', function () { var origInputDepth = 1; var origOutputDepth = 1; var fSize = 2; var origPad = 0; var origStride = 1; // tslint:disable-next-line:no-any var x = tf.tensor2d([2, 2], [2, 1]); var w = tf.tensor4d([3, 1, 5, 0], [fSize, fSize, origInputDepth, origOutputDepth]); expect(function () { return tf.conv2dTranspose(x, w, [2, 2, 1], origStride, origPad); }) .toThrowError(); }); it('throws when weights is not rank 4', function () { var origInputDepth = 1; var origOutputDepth = 1; var inputShape = [1, 1, origOutputDepth]; var fSize = 2; var origPad = 0; var origStride = 1; var x = tf.tensor3d([2], inputShape); // tslint:disable-next-line:no-any var w = tf.tensor3d([3, 1, 5, 0], [fSize, fSize, origInputDepth]); expect(function () { return tf.conv2dTranspose(x, w, [2, 2, 1], origStride, origPad); }) .toThrowError(); }); it('throws when x depth does not match weights original output depth', function () { var origInputDepth = 1; var origOutputDepth = 2; var wrongOrigOutputDepth = 3; var inputShape = [1, 1, origOutputDepth]; var fSize = 2; var origPad = 0; var origStride = 1; var x = tf.tensor3d([2, 2], inputShape); var w = tf.randomNormal([fSize, fSize, origInputDepth, wrongOrigOutputDepth]); expect(function () { return tf.conv2dTranspose(x, w, [2, 2, 2], origStride, origPad); }) .toThrowError(); }); it('throws when passed x as a non-tensor', function () { var origInputDepth = 1; var origOutputDepth = 1; var fSize = 2; var origPad = 0; var origStride = 1; var w = tf.tensor4d([3, 1, 5, 0], [fSize, fSize, origInputDepth, origOutputDepth]); expect(function () { return tf.conv2dTranspose({}, w, [2, 2, 1], origStride, origPad); }) .toThrowError(/Argument 'x' passed to 'conv2dTranspose' must be a Tensor/); }); it('throws when passed filter as a non-tensor', function () { var origOutputDepth = 1; var inputShape = [1, 1, origOutputDepth]; var origPad = 0; var origStride = 1; var x = tf.tensor3d([2], inputShape); expect(function () { return tf.conv2dTranspose(x, {}, [2, 2, 1], origStride, origPad); }) .toThrowError(/Argument 'filter' passed to 'conv2dTranspose' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var origPad, origStride, x, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: origPad = 0; origStride = 1; x = [[[2]]]; w = [[[[3]], [[1]]], [[[5]], [[0]]]]; result = tf.conv2dTranspose(x, w, [2, 2, 1], origStride, origPad); expected = [6, 2, 10, 0]; expect(result.shape).toEqual([2, 2, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=conv2d_transpose_test.js.map