"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); var util_1 = require("../util"); // Generates small floating point inputs to avoid overflows function generateCaseInputs(totalSizeTensor, totalSizeFilter) { var inp = new Array(totalSizeTensor); var filt = new Array(totalSizeFilter); for (var i = 0; i < totalSizeTensor; i++) { inp[i] = (i + 1) / totalSizeTensor; } for (var i = 0; i < totalSizeFilter; i++) { filt[i] = (i + 1) / totalSizeFilter; } return { input: inp, filter: filt }; } function generateGradientCaseInputs(totalSizeTensor, totalSizeFilter) { var inp = new Array(totalSizeTensor); var filt = new Array(totalSizeFilter); for (var i = 0; i < totalSizeTensor; i++) { inp[i] = i + 1; } for (var i = 0; i < totalSizeFilter; i++) { filt[i] = i + 1; } return { input: inp, filter: filt }; } function runConv3DTestCase(batch, inDepth, inHeight, inWidth, inChannels, outChannels, fDepth, fHeight, fWidth, pad, stride) { var inputShape = [batch, inDepth, inHeight, inWidth, inChannels]; var filterShape = [fDepth, fHeight, fWidth, inChannels, outChannels]; var totalSizeTensor = util_1.sizeFromShape(inputShape); var totalSizeFilter = util_1.sizeFromShape(filterShape); var inputs = generateCaseInputs(totalSizeTensor, totalSizeFilter); var x = tf.tensor5d(inputs.input, inputShape); var w = tf.tensor5d(inputs.filter, filterShape); var result = tf.conv3d(x, w, stride, pad); return result; } function runGradientConv3DTestCase(batch, inDepth, inHeight, inWidth, inChannels, outChannels, fDepth, fHeight, fWidth, pad, stride) { var inputShape = [batch, inDepth, inHeight, inWidth, inChannels]; var filterShape = [fDepth, fHeight, fWidth, inChannels, outChannels]; var totalSizeTensor = util_1.sizeFromShape(inputShape); var totalSizeFilter = util_1.sizeFromShape(filterShape); var inputs = generateGradientCaseInputs(totalSizeTensor, totalSizeFilter); var x = tf.tensor5d(inputs.input, inputShape); var w = tf.tensor5d(inputs.filter, filterShape); var grads = tf.grads(function (x, filter) { return tf.conv3d(x.clone(), filter.clone(), stride, pad).clone(); }); var _a = grads([x, w]), dx = _a[0], dfilter = _a[1]; expect(dx.shape).toEqual(x.shape); expect(dfilter.shape).toEqual(w.shape); return [dx, dfilter]; } jasmine_util_1.describeWithFlags('conv3d', jasmine_util_1.ALL_ENVS, function () { it('x=[1, 2, 3, 1, 3] f=[1, 1, 1, 3, 3] s=1 d=1 p=valid', function () { return __awaiter(_this, void 0, void 0, function () { var batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, pad, stride, result, expectedOutput, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: batch = 1; inDepth = 2; inHeight = 3; inWidth = 1; inChannels = 3; outChannels = 3; fSize = 1; pad = 'valid'; stride = 1; result = runConv3DTestCase(batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, fSize, fSize, pad, stride); expectedOutput = [ 0.18518519, 0.22222222, 0.25925926, 0.40740741, 0.5, 0.59259259, 0.62962963, 0.77777778, 0.92592593, 0.85185185, 1.05555556, 1.25925926, 1.07407407, 1.33333333, 1.59259259, 1.2962963, 1.61111111, 1.92592593 ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expectedOutput]); return [2 /*return*/]; } }); }); }); it('x=[1, 2, 1, 3, 3] f=[1, 1, 1, 3, 3] s=1 d=1 p=valid', function () { return __awaiter(_this, void 0, void 0, function () { var batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, pad, stride, result, expectedOutput, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: batch = 1; inDepth = 2; inHeight = 1; inWidth = 3; inChannels = 3; outChannels = 3; fSize = 1; pad = 'valid'; stride = 1; result = runConv3DTestCase(batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, fSize, fSize, pad, stride); expectedOutput = [ 0.18518519, 0.22222222, 0.25925926, 0.40740741, 0.5, 0.59259259, 0.62962963, 0.77777778, 0.92592593, 0.85185185, 1.05555556, 1.25925926, 1.07407407, 1.33333333, 1.59259259, 1.2962963, 1.61111111, 1.92592593 ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expectedOutput]); return [2 /*return*/]; } }); }); }); it('x=[1, 1, 2, 3, 3] f=[1, 1, 1, 3, 3] s=1 d=1 p=valid', function () { return __awaiter(_this, void 0, void 0, function () { var batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, pad, stride, result, expectedOutput, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: batch = 1; inDepth = 1; inHeight = 2; inWidth = 3; inChannels = 3; outChannels = 3; fSize = 1; pad = 'valid'; stride = 1; result = runConv3DTestCase(batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, fSize, fSize, pad, stride); expectedOutput = [ 0.18518519, 0.22222222, 0.25925926, 0.40740741, 0.5, 0.59259259, 0.62962963, 0.77777778, 0.92592593, 0.85185185, 1.05555556, 1.25925926, 1.07407407, 1.33333333, 1.59259259, 1.2962963, 1.61111111, 1.92592593 ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expectedOutput]); return [2 /*return*/]; } }); }); }); it('x=[1, 4, 2, 3, 3] f=[2, 2, 2, 3, 3] s=1 d=1 p=valid', function () { return __awaiter(_this, void 0, void 0, function () { var batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, pad, stride, result, expectedOutput, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: batch = 1; inDepth = 4; inHeight = 2; inWidth = 3; inChannels = 3; outChannels = 3; fSize = 2; pad = 'valid'; stride = 1; result = runConv3DTestCase(batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, fSize, fSize, pad, stride); expectedOutput = [ 3.77199074, 3.85069444, 3.92939815, 4.2650463, 4.35763889, 4.45023148, 6.73032407, 6.89236111, 7.05439815, 7.22337963, 7.39930556, 7.57523148, 9.68865741, 9.93402778, 10.17939815, 10.18171296, 10.44097222, 10.70023148 ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expectedOutput]); return [2 /*return*/]; } }); }); }); it('x=[1, 5, 8, 7, 1] f=[1, 2, 3, 1, 1] s=[2, 3, 1] d=1 p=same', function () { return __awaiter(_this, void 0, void 0, function () { var batch, inDepth, inHeight, inWidth, inChannels, outChannels, fDepth, fHeight, fWidth, pad, stride, result, expectedOutput, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: batch = 1; inDepth = 5; inHeight = 8; inWidth = 7; inChannels = 1; outChannels = 1; fDepth = 1; fHeight = 2; fWidth = 3; pad = 'same'; stride = [2, 3, 1]; result = runConv3DTestCase(batch, inDepth, inHeight, inWidth, inChannels, outChannels, fDepth, fHeight, fWidth, pad, stride); expectedOutput = [ 0.06071429, 0.08988095, 0.10238095, 0.11488095, 0.12738095, 0.13988095, 0.08452381, 0.26071429, 0.35238095, 0.36488095, 0.37738095, 0.38988095, 0.40238095, 0.23452381, 0.46071429, 0.61488095, 0.62738095, 0.63988095, 0.65238095, 0.66488095, 0.38452381, 1.12738095, 1.48988095, 1.50238095, 1.51488095, 1.52738095, 1.53988095, 0.88452381, 1.32738095, 1.75238095, 1.76488095, 1.77738095, 1.78988095, 1.80238095, 1.03452381, 1.52738095, 2.01488095, 2.02738095, 2.03988095, 2.05238095, 2.06488095, 1.18452381, 2.19404762, 2.88988095, 2.90238095, 2.91488095, 2.92738095, 2.93988095, 1.68452381, 2.39404762, 3.15238095, 3.16488095, 3.17738095, 3.18988095, 3.20238095, 1.83452381, 2.59404762, 3.41488095, 3.42738095, 3.43988095, 3.45238095, 3.46488095, 1.98452381 ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expectedOutput]); return [2 /*return*/]; } }); }); }); it('x=[1, 4, 2, 3, 3] f=[2, 2, 2, 3, 3] s=2 d=1 p=valid', function () { return __awaiter(_this, void 0, void 0, function () { var batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, pad, stride, result, expectedOutput, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: batch = 1; inDepth = 4; inHeight = 2; inWidth = 3; inChannels = 3; outChannels = 3; fSize = 2; pad = 'valid'; stride = 2; result = runConv3DTestCase(batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, fSize, fSize, pad, stride); expectedOutput = [ 3.77199074, 3.85069444, 3.92939815, 9.68865741, 9.93402778, 10.17939815 ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expectedOutput]); return [2 /*return*/]; } }); }); }); it('x=[1, 6, 7, 8, 2] f=[3, 2, 1, 2, 3] s=3 d=1 p=valid', function () { return __awaiter(_this, void 0, void 0, function () { var batch, inDepth, inHeight, inWidth, inChannels, outChannels, fDepth, fHeight, fWidth, pad, stride, result, expectedOutput, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: batch = 1; inDepth = 6; inHeight = 7; inWidth = 8; inChannels = 2; outChannels = 3; fDepth = 3; fHeight = 2; fWidth = 1; pad = 'valid'; stride = 3; result = runConv3DTestCase(batch, inDepth, inHeight, inWidth, inChannels, outChannels, fDepth, fHeight, fWidth, pad, stride); expectedOutput = [ 1.51140873, 1.57167659, 1.63194444, 1.56349206, 1.62673611, 1.68998016, 1.6155754, 1.68179563, 1.74801587, 1.9280754, 2.01215278, 2.09623016, 1.98015873, 2.0672123, 2.15426587, 2.03224206, 2.12227183, 2.21230159, 4.4280754, 4.65500992, 4.88194444, 4.48015873, 4.71006944, 4.93998016, 4.53224206, 4.76512897, 4.99801587, 4.84474206, 5.09548611, 5.34623016, 4.8968254, 5.15054563, 5.40426587, 4.94890873, 5.20560516, 5.46230159 ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expectedOutput]); return [2 /*return*/]; } }); }); }); it('x=[1, 4, 2, 3, 3] f=[2, 2, 2, 3, 3] s=2 d=1 p=same', function () { return __awaiter(_this, void 0, void 0, function () { var batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, pad, stride, result, expectedOutput, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: batch = 1; inDepth = 4; inHeight = 2; inWidth = 3; inChannels = 3; outChannels = 3; fSize = 2; pad = 'same'; stride = 2; result = runConv3DTestCase(batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, fSize, fSize, pad, stride); expectedOutput = [ 3.77199074, 3.85069444, 3.92939815, 2.0162037, 2.06597222, 2.11574074, 9.68865741, 9.93402778, 10.17939815, 4.59953704, 4.73263889, 4.86574074 ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expectedOutput]); return [2 /*return*/]; } }); }); }); it('x=[1, 3, 3, 3, 1] f=[1, 1, 1, 1, 1] s=2 d=1 p=same', function () { return __awaiter(_this, void 0, void 0, function () { var batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, pad, stride, result, expectedOutput, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: batch = 1; inDepth = 3; inHeight = 3; inWidth = 3; inChannels = 1; outChannels = 1; fSize = 1; pad = 'same'; stride = 2; result = runConv3DTestCase(batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, fSize, fSize, pad, stride); expectedOutput = [ 0.03703704, 0.11111111, 0.25925926, 0.33333333, 0.7037037, 0.77777778, 0.92592593, 1. ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expectedOutput]); return [2 /*return*/]; } }); }); }); it('x=[1, 3, 3, 3, 1] f=[1, 1, 1, 1, 1] s=2 d=1 p=valid', function () { return __awaiter(_this, void 0, void 0, function () { var batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, pad, stride, result, expectedOutput, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: batch = 1; inDepth = 3; inHeight = 3; inWidth = 3; inChannels = 1; outChannels = 1; fSize = 1; pad = 'valid'; stride = 2; result = runConv3DTestCase(batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, fSize, fSize, pad, stride); expectedOutput = [ 0.03703704, 0.11111111, 0.25925926, 0.33333333, 0.7037037, 0.77777778, 0.92592593, 1. ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expectedOutput]); return [2 /*return*/]; } }); }); }); it('x=[1, 7, 7, 7, 1] f=[2, 2, 2, 1, 1] s=3 d=1 p=same', function () { return __awaiter(_this, void 0, void 0, function () { var batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, pad, stride, result, expectedOutput, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: batch = 1; inDepth = 7; inHeight = 7; inWidth = 7; inChannels = 1; outChannels = 1; fSize = 2; pad = 'same'; stride = 3; result = runConv3DTestCase(batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, fSize, fSize, pad, stride); expectedOutput = [ 0.54081633, 0.58017493, 0.28061224, 0.81632653, 0.85568513, 0.40306122, 0.41873178, 0.4340379, 0.19642857, 2.46938776, 2.50874636, 1.1377551, 2.74489796, 2.78425656, 1.26020408, 1.16873178, 1.1840379, 0.51785714, 1.09511662, 1.10604956, 0.44642857, 1.17164723, 1.18258017, 0.47704082, 0.3691691, 0.37244898, 0.125 ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expectedOutput]); return [2 /*return*/]; } }); }); }); it('x=[1, 7, 7, 7, 1] f=[2, 2, 2, 1, 1] s=3 d=1 p=valid', function () { return __awaiter(_this, void 0, void 0, function () { var batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, pad, stride, result, expectedOutput, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: batch = 1; inDepth = 7; inHeight = 7; inWidth = 7; inChannels = 1; outChannels = 1; fSize = 2; pad = 'valid'; stride = 3; result = runConv3DTestCase(batch, inDepth, inHeight, inWidth, inChannels, outChannels, fSize, fSize, fSize, pad, stride); expectedOutput = [ 0.540816, 0.580175, 0.816327, 0.855685, 2.469388, 2.508746, 2.744898, 2.784257 ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expectedOutput]); return [2 /*return*/]; } }); }); }); it('x=[1, 2, 1, 2, 1] f=[2, 1, 2, 1, 2] s=1 d=1 p=valid', function () { return __awaiter(_this, void 0, void 0, function () { var batch, inDepth, inHeight, inWidth, inChannels, outChannels, fDepth, fHeight, fWidth, pad, stride, result, expectedOutput, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: batch = 1; inDepth = 2; inHeight = 1; inWidth = 2; inChannels = 1; outChannels = 2; fDepth = 2; fHeight = 1; fWidth = 2; pad = 'valid'; stride = 1; result = runConv3DTestCase(batch, inDepth, inHeight, inWidth, inChannels, outChannels, fDepth, fHeight, fWidth, pad, stride); expectedOutput = [1.5625, 1.875]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expectedOutput]); return [2 /*return*/]; } }); }); }); it('gradient with clones, x=[1,3,6,1,1] filter=[2,2,1,1,1] s=1 d=1 p=valid', function () { return __awaiter(_this, void 0, void 0, function () { var batch, inDepth, inHeight, inWidth, inChannels, outChannels, fDepth, fHeight, fWidth, pad, stride, _a, dx, dfilter, expectedFilterOutput, expectedOutput, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: batch = 1; inDepth = 3; inHeight = 6; inWidth = 1; inChannels = 1; outChannels = 1; fDepth = 2; fHeight = 2; fWidth = 1; pad = 'valid'; stride = 1; _a = runGradientConv3DTestCase(batch, inDepth, inHeight, inWidth, inChannels, outChannels, fDepth, fHeight, fWidth, pad, stride), dx = _a[0], dfilter = _a[1]; expectedFilterOutput = [60.0, 70.0, 120.0, 130.0]; expectedOutput = [ 1.0, 3.0, 3.0, 3.0, 3.0, 2.0, 4.0, 10.0, 10.0, 10.0, 10.0, 6.0, 3.0, 7.0, 7.0, 7.0, 7.0, 4.0 ]; _b = test_util_1.expectArraysClose; return [4 /*yield*/, dx.data()]; case 1: _b.apply(void 0, [_d.sent(), expectedOutput]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, dfilter.data()]; case 2: _c.apply(void 0, [_d.sent(), expectedFilterOutput]); return [2 /*return*/]; } }); }); }); it('throws when passed x as a non-tensor', function () { var inputDepth = 1; var outputDepth = 1; var fSize = 1; var pad = 'valid'; var stride = 1; var w = tf.tensor5d([2], [fSize, fSize, fSize, inputDepth, outputDepth]); expect(function () { return tf.conv3d({}, w, stride, pad); }) .toThrowError(/Argument 'x' passed to 'conv3d' must be a Tensor/); }); it('throws when passed filter as a non-tensor', function () { var inputDepth = 1; var inputShape = [2, 2, 1, inputDepth]; var pad = 'valid'; var stride = 1; var x = tf.tensor4d([1, 2, 3, 4], inputShape); expect(function () { return tf.conv3d(x, {}, stride, pad); }) .toThrowError(/Argument 'filter' passed to 'conv3d' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var pad, stride, x, w, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: pad = 'valid'; stride = 1; x = [[[[1], [2]], [[3], [4]]]]; w = [[[[[2]]]]]; result = tf.conv3d(x, w, stride, pad); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 4, 6, 8]]); return [2 /*return*/]; } }); }); }); it('throws when data format not NDHWC', function () { var inputDepth = 1; var outputDepth = 1; var inputShape = [2, 2, 1, inputDepth]; var pad = 'valid'; var fSize = 1; var stride = 1; var dataFormat = 'NCDHW'; var x = tf.tensor4d([1, 2, 3, 4], inputShape); var w = tf.tensor5d([2], [fSize, fSize, fSize, inputDepth, outputDepth]); expect(function () { return tf.conv3d(x, w, stride, pad, dataFormat); }).toThrowError(); }); }); //# sourceMappingURL=conv3d_test.js.map