"use strict"; /** * @license * Copyright 2017 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('conv3dTranspose', jasmine_util_1.ALL_ENVS, function () { // Reference Python TensorFlow code // ```python // import numpy as np // import tensorflow as tf // tf.enable_eager_execution() // x = np.array([2], dtype = np.float32).reshape(1, 1, 1, 1, 1) // w = np.array([5, 4, 8, 7, 1, 2, 6, 3], dtype = np.float32).reshape(2, 2, 2, // 1, 1) // tf.nn.conv3d_transpose(x, w, output_shape=[1, 2, 2, 2, 1], padding='VALID') // ``` it('input=2x2x2x1,d2=1,f=2,s=1,p=valid', function () { return __awaiter(_this, void 0, void 0, function () { var origInputDepth, origOutputDepth, inputShape, fSize, origPad, origStride, x, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: origInputDepth = 1; origOutputDepth = 1; inputShape = [1, 1, 1, origOutputDepth]; fSize = 2; origPad = 'valid'; origStride = 1; x = tf.tensor4d([2], inputShape); w = tf.tensor5d([5, 4, 8, 7, 1, 2, 6, 3], [fSize, fSize, fSize, origInputDepth, origOutputDepth]); result = tf.conv3dTranspose(x, w, [2, 2, 2, 1], origStride, origPad); expected = [10, 8, 16, 14, 2, 4, 12, 6]; expect(result.shape).toEqual([2, 2, 2, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); // Reference Python TensorFlow code // ```python // import numpy as np // import tensorflow as tf // tf.enable_eager_execution() // x = np.array([2, 3], dtype = np.float32).reshape(2, 1, 1, 1, 1, 1) // w = np.array([5, 4, 8, 7, 1, 2, 6, 3], dtype = np.float32).reshape(2, // 2, 2, 1, 1) // tf.nn.conv3d_transpose(x, w, output_shape=[2, 2, 2, 2, 1], padding='VALID') // ``` it('input=2x2x2x1,d2=1,f=2,s=1,p=valid, batch=2', function () { return __awaiter(_this, void 0, void 0, function () { var origInputDepth, origOutputDepth, inputShape, fSize, origPad, origStride, x, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: origInputDepth = 1; origOutputDepth = 1; inputShape = [2, 1, 1, 1, origOutputDepth]; fSize = 2; origPad = 'valid'; origStride = 1; x = tf.tensor5d([2, 3], inputShape); w = tf.tensor5d([5, 4, 8, 7, 1, 2, 6, 3], [fSize, fSize, fSize, origInputDepth, origOutputDepth]); result = tf.conv3dTranspose(x, w, [2, 2, 2, 2, 1], origStride, origPad); expected = [10, 8, 16, 14, 2, 4, 12, 6, 15, 12, 24, 21, 3, 6, 18, 9]; expect(result.shape).toEqual([2, 2, 2, 2, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=conv3d_transpose_test.js.map