"use strict"; /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); var engine_1 = require("../engine"); var tensor_util_env_1 = require("../tensor_util_env"); var operation_1 = require("./operation"); /** * Returns a diagonal tensor with a given diagonal values. * * Given a diagonal, this operation returns a tensor with the diagonal and * everything else padded with zeros. * * Assume the input has dimensions `[D1,..., Dk]`, then the output is a tensor * of rank 2k with dimensions `[D1,..., Dk, D1,..., Dk]` * * ```js * const x = tf.tensor1d([1, 2, 3, 4]); * * tf.diag(x).print() * ``` * ```js * const x = tf.tensor1d([1, 2, 3, 4, 5, 6, 6, 8], [4, 2]) * * tf.diag(x).print() * ``` * @param x The input tensor. */ function diag_(x) { var $x = tensor_util_env_1.convertToTensor(x, 'x', 'diag').flatten(); var outShape = x.shape.concat(x.shape); return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.diag($x); }, { $x: $x }) .reshape(outShape); } exports.diag = operation_1.op({ diag_: diag_ }); //# sourceMappingURL=diag.js.map