"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); var tensor_1 = require("../tensor"); var tensor_util_env_1 = require("../tensor_util_env"); var util = require("../util"); var array_ops_1 = require("./array_ops"); var dropout_util_1 = require("./dropout_util"); var operation_1 = require("./operation"); /** * Computes dropout. * * ```js * const x = tf.tensor1d([1, 2, 2, 1]); * const rate = 0.75; * const output = tf.dropout(x, rate); * output.print(); * ``` * * @param x A floating point Tensor or TensorLike. * @param rate A float in the range [0, 1). The probability that each element * of x is discarded. * @param noiseShape An array of numbers of type int32, representing the * shape for randomly generated keep/drop flags. If the noiseShape has null * value, it will be automatically replaced with the x's relative dimension * size. Optional. * @param seed Used to create random seeds. Optional. * @returns A Tensor of the same shape of x. */ /** @doc {heading: 'Operations', subheading: 'Dropout'} */ function dropout_(x, rate, noiseShape, seed) { var $x = tensor_util_env_1.convertToTensor(x, 'x', 'dropout'); util.assert($x.dtype === 'float32', function () { return "x has to be a floating point tensor since it's going to be " + ("scaled, but got a " + $x.dtype + " tensor instead."); }); util.assert(rate >= 0 && rate < 1, function () { return "rate must be a float in the range [0, 1), but got " + rate + "."; }); if (rate === 0) { return x instanceof tensor_1.Tensor ? $x.clone() : $x; } var $noiseShape = dropout_util_1.getNoiseShape($x, noiseShape); var keepProb = 1 - rate; var multiplier = array_ops_1.randomUniform($noiseShape, 0, 1, 'float32', seed) .add(keepProb) .floor() .div(keepProb); return $x.mul(multiplier); } exports.dropout = operation_1.op({ dropout_: dropout_ }); //# sourceMappingURL=dropout.js.map