"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); var tensor_ops_1 = require("./tensor_ops"); jasmine_util_1.describeWithFlags('dropout', jasmine_util_1.ALL_ENVS, function () { it('x 1d array, rate 0', function () { return __awaiter(_this, void 0, void 0, function () { var x, rate, output, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: x = tensor_ops_1.tensor1d([1, 2, 2, 1]); rate = 0; output = tf.dropout(x, rate); expect(output.dtype).toEqual(x.dtype); expect(output.shape).toEqual(x.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, x.data()]; case 1: _b = [_c.sent()]; return [4 /*yield*/, output.data()]; case 2: _a.apply(void 0, _b.concat([_c.sent()])); return [2 /*return*/]; } }); }); }); it('x 1d array, rate 0.75', function () { return __awaiter(_this, void 0, void 0, function () { var x, rate, output, xValues, outputValues, i; return __generator(this, function (_a) { switch (_a.label) { case 0: x = tensor_ops_1.tensor1d([1, 2, 2, 1]); rate = 0.75; output = tf.dropout(x, rate); expect(output.dtype).toEqual(x.dtype); expect(output.shape).toEqual(x.shape); return [4 /*yield*/, x.data()]; case 1: xValues = _a.sent(); return [4 /*yield*/, output.data()]; case 2: outputValues = _a.sent(); for (i = 0; i < xValues.length; i++) { if (outputValues[i] !== 0) { expect(outputValues[i]).toBeCloseTo(1 / (1 - rate) * xValues[i]); } } return [2 /*return*/]; } }); }); }); it('x 2d array, rate 0', function () { return __awaiter(_this, void 0, void 0, function () { var x, rate, output, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: x = tensor_ops_1.tensor2d([1, 5, 2, 4, 3, 6], [2, 3]); rate = 0; output = tf.dropout(x, rate); expect(output.dtype).toEqual(x.dtype); expect(output.shape).toEqual(x.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, x.data()]; case 1: _b = [_c.sent()]; return [4 /*yield*/, output.data()]; case 2: _a.apply(void 0, _b.concat([_c.sent()])); return [2 /*return*/]; } }); }); }); it('x 2d array, rate 0.75', function () { return __awaiter(_this, void 0, void 0, function () { var x, rate, output, xValues, outputValues, i; return __generator(this, function (_a) { switch (_a.label) { case 0: x = tensor_ops_1.tensor2d([1, 5, 2, 4, 3, 6], [2, 3]); rate = 0.75; output = tf.dropout(x, rate); expect(output.dtype).toEqual(x.dtype); expect(output.shape).toEqual(x.shape); return [4 /*yield*/, x.data()]; case 1: xValues = _a.sent(); return [4 /*yield*/, output.data()]; case 2: outputValues = _a.sent(); for (i = 0; i < xValues.length; i++) { if (outputValues[i] !== 0) { expect(outputValues[i]).toBeCloseTo(1 / (1 - rate) * xValues[i]); } } return [2 /*return*/]; } }); }); }); it('x 1d array, rate 0.75, with noise shape length = 1', function () { return __awaiter(_this, void 0, void 0, function () { var x, rate, noiseShape, output, xValues, outputValues, maskedOutput, i; return __generator(this, function (_a) { switch (_a.label) { case 0: x = tensor_ops_1.tensor1d([1, 2, 2, 1]); rate = 0.75; noiseShape = [1]; output = tf.dropout(x, rate, noiseShape); expect(output.dtype).toEqual(x.dtype); expect(output.shape).toEqual(x.shape); return [4 /*yield*/, x.data()]; case 1: xValues = _a.sent(); return [4 /*yield*/, output.data()]; case 2: outputValues = _a.sent(); maskedOutput = outputValues[0]; for (i = 0; i < xValues.length; i++) { if (maskedOutput === 0) { expect(outputValues[i]).toBe(maskedOutput); } if (outputValues[i] !== 0) { expect(outputValues[i]).toBeCloseTo(1 / (1 - rate) * xValues[i]); } } return [2 /*return*/]; } }); }); }); it('x 2d array, rate 0.75, with noise shape length = 2', function () { return __awaiter(_this, void 0, void 0, function () { var x, rate, noiseShape, output, xValues, outputValues, i, maskedOutput, j; return __generator(this, function (_a) { switch (_a.label) { case 0: x = tensor_ops_1.tensor2d([1, 5, 2, 4, 3, 6], [2, 3]); rate = 0.75; noiseShape = [2, 1]; output = tf.dropout(x, rate, noiseShape); expect(output.dtype).toEqual(x.dtype); expect(output.shape).toEqual(x.shape); return [4 /*yield*/, x.data()]; case 1: xValues = _a.sent(); return [4 /*yield*/, output.data()]; case 2: outputValues = _a.sent(); for (i = 0; i < x.shape[0]; i++) { maskedOutput = outputValues[i * x.shape[1]]; if (maskedOutput !== 0) { expect(maskedOutput) .toBeCloseTo(1 / (1 - rate) * xValues[i * x.shape[1]]); } else { for (j = 0; j < x.shape[1]; j++) { expect(outputValues[i * x.shape[1] + j]).toBe(maskedOutput); } } } return [2 /*return*/]; } }); }); }); it('broadcast noise shape', function () { return __awaiter(_this, void 0, void 0, function () { var x, rate, noiseShape, output, xValues, outputValues, i, maskedOutput, j; return __generator(this, function (_a) { switch (_a.label) { case 0: x = tensor_ops_1.tensor2d([1, 5, 2, 4, 3, 6], [2, 3]); rate = 0.75; noiseShape = [1]; output = tf.dropout(x, rate, noiseShape); expect(output.dtype).toEqual(x.dtype); expect(output.shape).toEqual(x.shape); return [4 /*yield*/, x.data()]; case 1: xValues = _a.sent(); return [4 /*yield*/, output.data()]; case 2: outputValues = _a.sent(); for (i = 0; i < x.shape[0]; i++) { maskedOutput = outputValues[i * x.shape[1]]; if (maskedOutput !== 0) { expect(maskedOutput) .toBeCloseTo(1 / (1 - rate) * xValues[i * x.shape[1]]); } else { for (j = 0; j < x.shape[1]; j++) { expect(outputValues[i * x.shape[1] + j]).toBe(maskedOutput); } } } return [2 /*return*/]; } }); }); }); it('x 1d array, rate 0.75, with seed', function () { return __awaiter(_this, void 0, void 0, function () { var x, rate, seed, output, xValues, outputValues, i; return __generator(this, function (_a) { switch (_a.label) { case 0: x = tensor_ops_1.tensor1d([1, 2, 2, 1]); rate = 0.75; seed = 23; output = tf.dropout(x, rate, null, seed); expect(output.dtype).toEqual(x.dtype); expect(output.shape).toEqual(x.shape); return [4 /*yield*/, x.data()]; case 1: xValues = _a.sent(); return [4 /*yield*/, output.data()]; case 2: outputValues = _a.sent(); for (i = 0; i < xValues.length; i++) { if (outputValues[i] !== 0) { expect(outputValues[i]).toBeCloseTo(1 / (1 - rate) * xValues[i]); } } return [2 /*return*/]; } }); }); }); it('x TensorLike object', function () { return __awaiter(_this, void 0, void 0, function () { var x, rate, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = [1.0, 2.0, 2.0, 1.0]; rate = 0; output = tf.dropout(x, rate); expect(output.dtype).toEqual('float32'); expect(output.shape).toEqual([4]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), x]); return [2 /*return*/]; } }); }); }); it('throws when x.dtype != float32', function () { return __awaiter(_this, void 0, void 0, function () { var x, rate; return __generator(this, function (_a) { x = tensor_ops_1.tensor1d([1, 2, 2, 1], 'int32'); rate = 0.75; expect(function () { return tf.dropout(x, rate); }).toThrowError(); return [2 /*return*/]; }); }); }); it('throws when rate is not in the range [0, 1)', function () { return __awaiter(_this, void 0, void 0, function () { var x, rate; return __generator(this, function (_a) { x = tensor_ops_1.tensor1d([1, 2, 2, 1]); rate = 1.5; expect(function () { return tf.dropout(x, rate); }).toThrowError(); return [2 /*return*/]; }); }); }); }); //# sourceMappingURL=dropout_test.js.map