"use strict"; /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('fused matmul', jasmine_util_1.ALL_ENVS, function () { it('fused A x B', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, c, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); b = tf.tensor2d([0, 1, -3, 2, 2, 1], [3, 2]); c = tf.fused.matMul({ a: a, b: b }); expect(c.shape).toEqual([2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, c.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 8, -3, 20]]); return [2 /*return*/]; } }); }); }); it('fused A x B with relu', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, transposeA, transposeB, c, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); b = tf.tensor2d([0, 1, -3, 2, 2, 1], [3, 2]); transposeA = false; transposeB = false; c = tf.fused.matMul({ a: a, b: b, transposeA: transposeA, transposeB: transposeB, bias: null, activation: 'relu' }); expect(c.shape).toEqual([2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, c.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 8, 0, 20]]); return [2 /*return*/]; } }); }); }); it('fused A x B with elu', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, transposeA, transposeB, c, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); b = tf.tensor2d([0, 1, -3, 2, 2, 1], [3, 2]); transposeA = false; transposeB = false; c = tf.fused.matMul({ a: a, b: b, transposeA: transposeA, transposeB: transposeB, bias: null, activation: 'elu' }); expect(c.shape).toEqual([2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, c.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 8, -0.9502, 20]]); return [2 /*return*/]; } }); }); }); it('fused A x B with relu6', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, transposeA, transposeB, c, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); b = tf.tensor2d([0, 1, -3, 2, 2, 1], [3, 2]); transposeA = false; transposeB = false; c = tf.fused.matMul({ a: a, b: b, transposeA: transposeA, transposeB: transposeB, bias: null, activation: 'relu6' }); expect(c.shape).toEqual([2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, c.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 6, 0, 6]]); return [2 /*return*/]; } }); }); }); it('fused A x B with prelu', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, alpha, transposeA, transposeB, c, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); b = tf.tensor2d([0, 1, -3, 2, 2, 1], [3, 2]); alpha = tf.tensor2d([0.5, 0.5], [1, 2]); transposeA = false; transposeB = false; c = tf.fused.matMul({ a: a, b: b, transposeA: transposeA, transposeB: transposeB, bias: null, activation: 'prelu', preluActivationWeights: alpha }); expect(c.shape).toEqual([2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, c.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 8, -1.5, 20]]); return [2 /*return*/]; } }); }); }); it('fused A x B with relu transpose', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, transposeA, transposeB, c, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); b = tf.tensor2d([0, 1, -3, 2, 2, 1], [2, 3]); transposeA = false; transposeB = true; c = tf.fused.matMul({ a: a, b: b, transposeA: transposeA, transposeB: transposeB, bias: null, activation: 'relu' }); expect(c.shape).toEqual([2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, c.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 9, 0, 24]]); return [2 /*return*/]; } }); }); }); it('fused A x B with 2d bias and relu', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, c, transposeA, transposeB, d, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); b = tf.tensor2d([0, 1, -3, 2, 2, 1], [3, 2]); c = tf.tensor2d([1, 1, 1, 1], [2, 2]); transposeA = false; transposeB = false; d = tf.fused.matMul({ a: a, b: b, transposeA: transposeA, transposeB: transposeB, bias: c, activation: 'relu' }); expect(d.shape).toEqual([2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, d.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 9, 0, 21]]); return [2 /*return*/]; } }); }); }); it('fused A x B with relu and broadcasted bias', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, c, act, transposeA, transposeB, d, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); b = tf.tensor2d([0, 1, -3, 2, 2, 1], [3, 2]); c = tf.tensor1d([1, 1]); act = 'relu'; transposeA = false; transposeB = false; d = tf.fused.matMul({ a: a, b: b, transposeA: transposeA, transposeB: transposeB, bias: c, activation: act }); expect(d.shape).toEqual([2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, d.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 9, 0, 21]]); return [2 /*return*/]; } }); }); }); it('fused A x B with elu and broadcasted bias', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, c, act, transposeA, transposeB, d, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); b = tf.tensor2d([0, 1, -3, 2, 2, 1], [3, 2]); c = tf.tensor1d([1, 1]); act = 'elu'; transposeA = false; transposeB = false; d = tf.fused.matMul({ a: a, b: b, transposeA: transposeA, transposeB: transposeB, bias: c, activation: act }); expect(d.shape).toEqual([2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, d.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 9, -0.8647, 21]]); return [2 /*return*/]; } }); }); }); it('fused A x B with relu and broadcasted bias different rank', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, c, act, transposeA, transposeB, d, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor3d([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [2, 2, 3]); b = tf.tensor3d([0, 1, -3, 2, 2, 1, 0, 1, -3, 2, 2, 1], [2, 3, 2]); c = tf.tensor2d([1, 2], [1, 2]); act = 'relu'; transposeA = false; transposeB = false; d = tf.fused.matMul({ a: a, b: b, transposeA: transposeA, transposeB: transposeB, bias: c, activation: act }); expect(d.shape).toEqual([2, 2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, d.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 6, 0, 18, 0, 30, 0, 42]]); return [2 /*return*/]; } }); }); }); it('fused A x B with 2d bias only', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, c, transposeA, transposeB, d, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); b = tf.tensor2d([0, 1, -3, 2, 2, 1], [3, 2]); c = tf.tensor2d([1, 1, 1, 1], [2, 2]); transposeA = false; transposeB = false; d = tf.fused.matMul({ a: a, b: b, transposeA: transposeA, transposeB: transposeB, bias: c, activation: 'linear' }); expect(d.shape).toEqual([2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, d.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 9, -2, 21]]); return [2 /*return*/]; } }); }); }); it('fused A x B with relu gradient', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, transposeA, transposeB, grads, fusedGrads, _a, da, db, _b, fusedDa, fusedDb, _c, _d, _e, _f; return __generator(this, function (_g) { switch (_g.label) { case 0: a = tf.tensor2d([1, 2, 3, 10, 20, -30], [2, 3]); b = tf.tensor2d([2, 3, 4, -1, 2, 3], [3, 2]); dy = tf.tensor2d([1, 10, 20, 30], [2, 2]); transposeA = false; transposeB = false; grads = tf.grads(function (a, b) { var prod = tf.matMul(a, b, transposeA, transposeB); return tf.relu(prod); }); fusedGrads = tf.grads(function (a, b) { return tf.fused.matMul({ a: a, b: b, transposeA: transposeA, transposeB: transposeB, bias: null, activation: 'relu' }); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; _b = fusedGrads([a, b], dy), fusedDa = _b[0], fusedDb = _b[1]; _c = test_util_1.expectArraysClose; return [4 /*yield*/, da.array()]; case 1: _d = [_g.sent()]; return [4 /*yield*/, fusedDa.array()]; case 2: _c.apply(void 0, _d.concat([_g.sent()])); _e = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 3: _f = [_g.sent()]; return [4 /*yield*/, fusedDb.array()]; case 4: _e.apply(void 0, _f.concat([_g.sent()])); return [2 /*return*/]; } }); }); }); it('gradient with clones A x B with relu', function () { var a = tf.tensor2d([1, 2, 3, 10, 20, -30], [2, 3]); var b = tf.tensor2d([2, 3, 4, -1, 2, 3], [3, 2]); var dy = tf.tensor2d([1, 10, 20, 30], [2, 2]); var transposeA = false; var transposeB = false; var fusedGrads = tf.grads(function (a, b) { return tf.fused .matMul({ a: a.clone(), b: b.clone(), transposeA: transposeA, transposeB: transposeB, bias: null, activation: 'relu' }) .clone(); }); var _a = fusedGrads([a, b], dy), fusedDa = _a[0], fusedDb = _a[1]; expect(fusedDa.shape).toEqual(a.shape); expect(fusedDb.shape).toEqual(b.shape); }); it('fused A x B with relu bias gradient', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, c, transposeA, transposeB, dy, grads, fusedGrads, _a, da, db, dc, _b, fusedDa, fusedDb, fusedDc, _c, _d, _e, _f, _g, _h; return __generator(this, function (_j) { switch (_j.label) { case 0: a = tf.tensor2d([1, 2, 3, 10, 20, -30], [2, 3]); b = tf.tensor2d([2, 3, 4, -1, 2, 3], [3, 2]); c = tf.tensor2d([1, 1, 1, 1], [2, 2]); transposeA = false; transposeB = false; dy = tf.tensor2d([1, 10, 20, 30], [2, 2]); grads = tf.grads(function (a, b, c) { var prod = tf.matMul(a, b, transposeA, transposeB); var sum = tf.add(prod, c); return tf.relu(sum); }); fusedGrads = tf.grads(function (a, b, c) { return tf.fused.matMul({ a: a, b: b, transposeA: transposeA, transposeB: transposeB, bias: c, activation: 'relu' }); }); _a = grads([a, b, c], dy), da = _a[0], db = _a[1], dc = _a[2]; _b = fusedGrads([a, b, c], dy), fusedDa = _b[0], fusedDb = _b[1], fusedDc = _b[2]; _c = test_util_1.expectArraysClose; return [4 /*yield*/, da.array()]; case 1: _d = [_j.sent()]; return [4 /*yield*/, fusedDa.array()]; case 2: _c.apply(void 0, _d.concat([_j.sent()])); _e = test_util_1.expectArraysClose; return [4 /*yield*/, db.array()]; case 3: _f = [_j.sent()]; return [4 /*yield*/, fusedDb.array()]; case 4: _e.apply(void 0, _f.concat([_j.sent()])); _g = test_util_1.expectArraysClose; return [4 /*yield*/, dc.array()]; case 5: _h = [_j.sent()]; return [4 /*yield*/, fusedDc.array()]; case 6: _g.apply(void 0, _h.concat([_j.sent()])); return [2 /*return*/]; } }); }); }); it('fused A x B with relu bias gradient transpose', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, c, transposeA, transposeB, dy, grads, fusedGrads, _a, da, db, dc, _b, fusedDa, fusedDb, fusedDc, _c, _d, _e, _f, _g, _h; return __generator(this, function (_j) { switch (_j.label) { case 0: a = tf.tensor2d([1, 2, 3, 10, 20, -30], [3, 2]); b = tf.tensor2d([2, 3, 4, -1, 2, 3], [3, 2]); c = tf.tensor2d([1, 1, 1, 1], [2, 2]); transposeA = true; transposeB = false; dy = tf.tensor2d([1, 10, 20, 30], [2, 2]); grads = tf.grads(function (a, b, c) { var prod = tf.matMul(a, b, transposeA, transposeB); var sum = tf.add(prod, c); return tf.relu(sum); }); fusedGrads = tf.grads(function (a, b, c) { return tf.fused.matMul({ a: a, b: b, transposeA: transposeA, transposeB: transposeB, bias: c, activation: 'relu' }); }); _a = grads([a, b, c], dy), da = _a[0], db = _a[1], dc = _a[2]; _b = fusedGrads([a, b, c], dy), fusedDa = _b[0], fusedDb = _b[1], fusedDc = _b[2]; _c = test_util_1.expectArraysClose; return [4 /*yield*/, da.array()]; case 1: _d = [_j.sent()]; return [4 /*yield*/, fusedDa.array()]; case 2: _c.apply(void 0, _d.concat([_j.sent()])); _e = test_util_1.expectArraysClose; return [4 /*yield*/, db.array()]; case 3: _f = [_j.sent()]; return [4 /*yield*/, fusedDb.array()]; case 4: _e.apply(void 0, _f.concat([_j.sent()])); _g = test_util_1.expectArraysClose; return [4 /*yield*/, dc.array()]; case 5: _h = [_j.sent()]; return [4 /*yield*/, fusedDc.array()]; case 6: _g.apply(void 0, _h.concat([_j.sent()])); return [2 /*return*/]; } }); }); }); it('fused A x B with relu and broadcasted bias gradient', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, c, transposeA, transposeB, dy, grads, fusedGrads, _a, da, db, dc, _b, fusedDa, fusedDb, fusedDc, _c, _d, _e, _f, _g, _h; return __generator(this, function (_j) { switch (_j.label) { case 0: a = tf.tensor2d([1, 2, 3, 10, 20, -30], [2, 3]); b = tf.tensor2d([2, 3, 4, -1, 2, 3], [3, 2]); c = tf.tensor2d([[1]]); transposeA = false; transposeB = false; dy = tf.tensor2d([1, 10, 20, 30], [2, 2]); grads = tf.grads(function (a, b, c) { var prod = tf.matMul(a, b, transposeA, transposeB); var sum = tf.add(prod, c); return tf.relu(sum); }); fusedGrads = tf.grads(function (a, b, c) { return tf.fused.matMul({ a: a, b: b, transposeA: transposeA, transposeB: transposeB, bias: c, activation: 'relu' }); }); _a = grads([a, b, c], dy), da = _a[0], db = _a[1], dc = _a[2]; _b = fusedGrads([a, b, c], dy), fusedDa = _b[0], fusedDb = _b[1], fusedDc = _b[2]; _c = test_util_1.expectArraysClose; return [4 /*yield*/, da.array()]; case 1: _d = [_j.sent()]; return [4 /*yield*/, fusedDa.array()]; case 2: _c.apply(void 0, _d.concat([_j.sent()])); _e = test_util_1.expectArraysClose; return [4 /*yield*/, db.array()]; case 3: _f = [_j.sent()]; return [4 /*yield*/, fusedDb.array()]; case 4: _e.apply(void 0, _f.concat([_j.sent()])); _g = test_util_1.expectArraysClose; return [4 /*yield*/, dc.array()]; case 5: _h = [_j.sent()]; return [4 /*yield*/, fusedDc.array()]; case 6: _g.apply(void 0, _h.concat([_j.sent()])); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('fused depthwiseConv2D', jasmine_util_1.ALL_ENVS, function () { it('basic', function () { return __awaiter(_this, void 0, void 0, function () { var fSize, pad, strides, chMul, inDepth, x, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: fSize = 2; pad = 'valid'; strides = 1; chMul = 1; inDepth = 1; x = tf.tensor4d([ 0.230664, 0.987388, 0.0685208, 0.419224, 0.887861, 0.731641, 0.0741907, 0.409265, 0.351377 ], [1, 3, 3, inDepth]); w = tf.tensor4d([-0.303873, -0.229223, 0.144333, 0.803373], [fSize, fSize, inDepth, chMul]); result = tf.fused.depthwiseConv2d({ x: x, filter: w, strides: strides, pad: pad }); expect(result.shape).toEqual([1, 2, 2, 1]); expected = [0.47737, 0.40018, 0.00859, -0.09615]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('basic with relu', function () { return __awaiter(_this, void 0, void 0, function () { var fSize, pad, strides, chMul, inDepth, x, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: fSize = 2; pad = 'valid'; strides = 1; chMul = 1; inDepth = 1; x = tf.tensor4d([ 0.230664, 0.987388, 0.0685208, 0.419224, 0.887861, 0.731641, 0.0741907, 0.409265, 0.351377 ], [1, 3, 3, inDepth]); w = tf.tensor4d([-0.303873, -0.229223, 0.144333, 0.803373], [fSize, fSize, inDepth, chMul]); result = tf.fused.depthwiseConv2d({ x: x, filter: w, strides: strides, pad: pad, activation: 'relu' }); expect(result.shape).toEqual([1, 2, 2, 1]); expected = [0.47737, 0.40018, 0.00859, 0]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('basic with broadcasted bias and relu', function () { return __awaiter(_this, void 0, void 0, function () { var fSize, pad, strides, chMul, inDepth, x, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: fSize = 2; pad = 'valid'; strides = 1; chMul = 1; inDepth = 1; x = tf.tensor4d([ 0.230664, 0.987388, 0.0685208, 0.419224, 0.887861, 0.731641, 0.0741907, 0.409265, 0.351377 ], [1, 3, 3, inDepth]); w = tf.tensor4d([-0.303873, -0.229223, 0.144333, 0.803373], [fSize, fSize, inDepth, chMul]); result = tf.fused.depthwiseConv2d({ x: x, filter: w, strides: strides, pad: pad, bias: tf.scalar(1), activation: 'relu' }); expect(result.shape).toEqual([1, 2, 2, 1]); expected = [1.47737, 1.40018, 1.00859, 0.90385]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('prelu', function () { return __awaiter(_this, void 0, void 0, function () { var fSize, pad, strides, chMul, inDepth, x, alpha, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: fSize = 3; pad = 'valid'; strides = 1; chMul = 1; inDepth = 1; x = tf.tensor4d([ 0.149194, 0.089009, 0.654891, 0.083324, 0.537043, 0.644331, 0.563037, 0.211859, 0.633501, 0.186427, 0.777034, 0.50001, 0.607341, 0.95303, 0.696479, 0.050387, 0.62045, 0.728049, 0.028043, 0.437009, 0.712881, 0.741935, 0.974474, 0.621102, 0.171411 ], [1, 5, 5, inDepth]); alpha = tf.tensor4d([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], [1, 3, 3, 1]); w = tf.tensor4d([ -0.125386, -0.975199, -0.640437, -0.281895, -0.990968, -0.347208, -0.889702, -0.180695, -0.691992 ], [fSize, fSize, inDepth, chMul]); result = tf.fused.depthwiseConv2d({ x: x, filter: w, strides: strides, pad: pad, activation: 'prelu', preluActivationWeights: alpha }); expect(result.shape).toEqual([1, 3, 3, 1]); expected = [ -0.25400, -0.50118, -0.73622, -0.94068, -1.2298, -1.84585, -2.3089, -2.7499, -2.64077 ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('gradient x=[2,3,3,1] f=[2,2,1,1] s=1 p=0', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, outputDepth, inputShape, filterSize, strides, pad, filterShape, filter, x, dy, grads, _a, dx, dfilter, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: inputDepth = 1; outputDepth = 1; inputShape = [2, 3, 3, inputDepth]; filterSize = 2; strides = 1; pad = 0; filterShape = [filterSize, filterSize, inputDepth, outputDepth]; filter = tf.tensor4d([-1, 1, -2, 0.5], filterShape); x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9], inputShape); dy = tf.tensor4d([3, 1, 2, 0, 3, 1, 2, 0], [2, 2, 2, 1]); grads = tf.grads(function (x, filter) { return tf.fused.depthwiseConv2d({ x: x, filter: filter, strides: strides, pad: pad }); }); _a = grads([x, filter], dy), dx = _a[0], dfilter = _a[1]; expect(dx.shape).toEqual(x.shape); _b = test_util_1.expectArraysClose; return [4 /*yield*/, dx.data()]; case 1: _b.apply(void 0, [_d.sent(), [-3, 2, 1, -8, 1.5, 0.5, -4, 1, 0, -3, 2, 1, -8, 1.5, 0.5, -4, 1, 0]]); expect(dfilter.shape).toEqual(filterShape); _c = test_util_1.expectArraysClose; return [4 /*yield*/, dfilter.data()]; case 2: _c.apply(void 0, [_d.sent(), [26, 38, 62, 74]]); return [2 /*return*/]; } }); }); }); it('gradient x=[2,3,3,1] f=[2,2,1,1] s=1 p=0 with bias', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, outputDepth, inputShape, filterSize, strides, pad, filterShape, filter, bias, x, dy, fusedGrads, _a, dxFused, dfilterFused, dbiasFused, grads, _b, dx, dfilter, dbias, _c, _d, _e, _f, _g, _h; return __generator(this, function (_j) { switch (_j.label) { case 0: inputDepth = 1; outputDepth = 1; inputShape = [2, 3, 3, inputDepth]; filterSize = 2; strides = 1; pad = 0; filterShape = [filterSize, filterSize, inputDepth, outputDepth]; filter = tf.tensor4d([-1, 1, -2, 0.5], filterShape); bias = tf.ones([2, 2, 2, 1]); x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9], inputShape); dy = tf.tensor4d([3, 1, 2, 0, 3, 1, 2, 0], [2, 2, 2, 1]); fusedGrads = tf.grads(function (x, w, b) { return tf.fused.depthwiseConv2d({ x: x, filter: w, strides: strides, pad: pad, dataFormat: 'NHWC', dilations: [1, 1], bias: b }); }); _a = fusedGrads([x, filter, bias], dy), dxFused = _a[0], dfilterFused = _a[1], dbiasFused = _a[2]; grads = tf.grads(function (x, filter, bias) { var conv = tf.depthwiseConv2d(x, filter, strides, pad); var sum = tf.add(conv, bias); return sum; }); _b = grads([x, filter, bias], dy), dx = _b[0], dfilter = _b[1], dbias = _b[2]; _c = test_util_1.expectArraysClose; return [4 /*yield*/, dxFused.array()]; case 1: _d = [_j.sent()]; return [4 /*yield*/, dx.array()]; case 2: _c.apply(void 0, _d.concat([_j.sent()])); _e = test_util_1.expectArraysClose; return [4 /*yield*/, dfilterFused.array()]; case 3: _f = [_j.sent()]; return [4 /*yield*/, dfilter.array()]; case 4: _e.apply(void 0, _f.concat([_j.sent()])); _g = test_util_1.expectArraysClose; return [4 /*yield*/, dbiasFused.array()]; case 5: _h = [_j.sent()]; return [4 /*yield*/, dbias.array()]; case 6: _g.apply(void 0, _h.concat([_j.sent()])); return [2 /*return*/]; } }); }); }); it('gradient x=[2,3,3,1] f=[2,2,1,1] s=1 p=0 with bias and activation', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, outputDepth, inputShape, filterSize, strides, pad, filterShape, filter, bias, x, dy, fusedGrads, _a, dxFused, dfilterFused, dbiasFused, grads, _b, dx, dfilter, dbias, _c, _d, _e, _f, _g, _h; return __generator(this, function (_j) { switch (_j.label) { case 0: inputDepth = 1; outputDepth = 1; inputShape = [2, 3, 3, inputDepth]; filterSize = 2; strides = 1; pad = 0; filterShape = [filterSize, filterSize, inputDepth, outputDepth]; filter = tf.tensor4d([-1, 1, -2, 0.5], filterShape); bias = tf.ones([2, 2, 2, 1]); x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9], inputShape); dy = tf.tensor4d([3, 1, 2, 0, 3, 1, 2, 0], [2, 2, 2, 1]); fusedGrads = tf.grads(function (x, w, b) { return tf.fused.depthwiseConv2d({ x: x, filter: w, strides: strides, pad: pad, dataFormat: 'NHWC', dilations: [1, 1], bias: b, activation: 'relu' }); }); _a = fusedGrads([x, filter, bias], dy), dxFused = _a[0], dfilterFused = _a[1], dbiasFused = _a[2]; grads = tf.grads(function (x, filter, bias) { var conv = tf.depthwiseConv2d(x, filter, strides, pad); var sum = tf.add(conv, bias); return tf.relu(sum); }); _b = grads([x, filter, bias], dy), dx = _b[0], dfilter = _b[1], dbias = _b[2]; _c = test_util_1.expectArraysClose; return [4 /*yield*/, dxFused.array()]; case 1: _d = [_j.sent()]; return [4 /*yield*/, dx.array()]; case 2: _c.apply(void 0, _d.concat([_j.sent()])); _e = test_util_1.expectArraysClose; return [4 /*yield*/, dfilterFused.array()]; case 3: _f = [_j.sent()]; return [4 /*yield*/, dfilter.array()]; case 4: _e.apply(void 0, _f.concat([_j.sent()])); _g = test_util_1.expectArraysClose; return [4 /*yield*/, dbiasFused.array()]; case 5: _h = [_j.sent()]; return [4 /*yield*/, dbias.array()]; case 6: _g.apply(void 0, _h.concat([_j.sent()])); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('fused conv2d', jasmine_util_1.ALL_ENVS, function () { it('basic', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inShape, outputDepth, fSize, pad, stride, x, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 2; inShape = [2, 2, 2, inputDepth]; outputDepth = 2; fSize = 1; pad = 0; stride = 1; x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], inShape); w = tf.tensor4d([-1, 1, -2, 0.5], [fSize, fSize, inputDepth, outputDepth]); result = tf.fused.conv2d({ x: x, filter: w, strides: stride, pad: pad }); expect(result.shape).toEqual([2, 2, 2, 2]); expected = [-5, 2, -11, 5, -17, 8, -23, 11, -29, 14, -35, 17, -41, 20, -47, 23]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('basic with relu', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inShape, outputDepth, fSize, pad, stride, x, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 2; inShape = [2, 2, 2, inputDepth]; outputDepth = 2; fSize = 1; pad = 0; stride = 1; x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], inShape); w = tf.tensor4d([-1, 1, -2, 0.5], [fSize, fSize, inputDepth, outputDepth]); result = tf.fused.conv2d({ x: x, filter: w, strides: stride, pad: pad, dataFormat: 'NHWC', dilations: [1, 1], activation: 'relu' }); expect(result.shape).toEqual([2, 2, 2, 2]); expected = [0, 2, 0, 5, 0, 8, 0, 11, 0, 14, 0, 17, 0, 20, 0, 23]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('basic with bias', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inShape, outputDepth, fSize, pad, stride, x, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 2; inShape = [2, 2, 2, inputDepth]; outputDepth = 2; fSize = 1; pad = 0; stride = 1; x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], inShape); w = tf.tensor4d([-1, 1, -2, 0.5], [fSize, fSize, inputDepth, outputDepth]); result = tf.fused.conv2d({ x: x, filter: w, strides: stride, pad: pad, dataFormat: 'NHWC', dilations: [1, 1], bias: tf.tensor1d([5, 6]) }); expect(result.shape).toEqual([2, 2, 2, 2]); expected = [0, 8, -6, 11, -12, 14, -18, 17, -24, 20, -30, 23, -36, 26, -42, 29]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('basic with elu', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inShape, outputDepth, fSize, pad, stride, x, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 2; inShape = [2, 2, 2, inputDepth]; outputDepth = 2; fSize = 1; pad = 0; stride = 1; x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], inShape); w = tf.tensor4d([-1, 1, -2, 0.5], [fSize, fSize, inputDepth, outputDepth]); result = tf.fused.conv2d({ x: x, filter: w, strides: stride, pad: pad, dataFormat: 'NHWC', dilations: [1, 1], activation: 'elu' }); expect(result.shape).toEqual([2, 2, 2, 2]); expected = [-0.99326, 2, -1, 5, -1, 8, -1, 11, -1, 14, -1, 17, -1, 20, -1, 23]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('basic with prelu', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inShape, outputDepth, fSize, pad, stride, x, alpha, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 2; inShape = [2, 2, 2, inputDepth]; outputDepth = 2; fSize = 1; pad = 0; stride = 1; x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], inShape); alpha = tf.tensor3d([0.25, 0.75], [1, 1, 2]); w = tf.tensor4d([-1, 1, -2, 0.5], [fSize, fSize, inputDepth, outputDepth]); result = tf.fused.conv2d({ x: x, filter: w, strides: stride, pad: pad, dataFormat: 'NHWC', dilations: [1, 1], activation: 'prelu', preluActivationWeights: alpha }); expect(result.shape).toEqual([2, 2, 2, 2]); expected = [ -1.25, 2, -2.75, 5, -4.25, 8, -5.75, 11, -7.25, 14, -8.75, 17, -10.25, 20, -11.75, 23 ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('basic with broadcasted bias and relu', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inShape, outputDepth, fSize, pad, stride, x, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 2; inShape = [2, 2, 2, inputDepth]; outputDepth = 2; fSize = 1; pad = 0; stride = 1; x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], inShape); w = tf.tensor4d([-1, 1, -2, 0.5], [fSize, fSize, inputDepth, outputDepth]); result = tf.fused.conv2d({ x: x, filter: w, strides: stride, pad: pad, dataFormat: 'NHWC', dilations: [1, 1], bias: tf.scalar(5), activation: 'relu' }); expect(result.shape).toEqual([2, 2, 2, 2]); expected = [0, 7, 0, 10, 0, 13, 0, 16, 0, 19, 0, 22, 0, 25, 0, 28]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('im2row', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, pad, strides, x, w, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 1; inputShape = [4, 4, inputDepth]; outputDepth = 3; fSize = 1; pad = 'same'; strides = [2, 2]; x = tf.tensor3d([ 10, 30, 50, 70, 20, 40, 60, 80, -10, -30, -50, -70, -20, -40, -60, -80 ], inputShape); w = tf.tensor4d([1, 0.5, 1], [fSize, fSize, inputDepth, outputDepth]); result = tf.fused.conv2d({ x: x, filter: w, strides: strides, pad: pad }); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [10, 5, 10, 50, 25, 50, -10, -5, -10, -50, -25, -50]]); return [2 /*return*/]; } }); }); }); it('im2row with relu', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, pad, strides, x, w, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 1; inputShape = [4, 4, inputDepth]; outputDepth = 3; fSize = 1; pad = 'same'; strides = [2, 2]; x = tf.tensor3d([ 10, 30, 50, 70, 20, 40, 60, 80, -10, -30, -50, -70, -20, -40, -60, -80 ], inputShape); w = tf.tensor4d([1, 0.5, 1], [fSize, fSize, inputDepth, outputDepth]); result = tf.fused.conv2d({ x: x, filter: w, strides: strides, pad: pad, dataFormat: 'NHWC', dilations: [1, 1], activation: 'relu' }); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [10, 5, 10, 50, 25, 50, 0, 0, 0, 0, 0, 0]]); return [2 /*return*/]; } }); }); }); it('im2row with prelu', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, pad, strides, x, w, alpha, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 1; inputShape = [4, 4, inputDepth]; outputDepth = 3; fSize = 1; pad = 'same'; strides = [2, 2]; x = tf.tensor3d([ 10, 30, 50, 70, 20, 40, 60, 80, -10, -30, -50, -70, -20, -40, -60, -80 ], inputShape); w = tf.tensor4d([1, 0.5, 1], [fSize, fSize, inputDepth, outputDepth]); alpha = tf.tensor3d([0.5], [1, 1, inputDepth]); result = tf.fused.conv2d({ x: x, filter: w, strides: strides, pad: pad, dataFormat: 'NHWC', dilations: [1, 1], activation: 'prelu', preluActivationWeights: alpha }); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [10, 5, 10, 50, 25, 50, -5, -2.5, -5, -25, -12.5, -25]]); return [2 /*return*/]; } }); }); }); it('pointwise with prelu', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, pad, strides, x, w, alpha, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 1; inputShape = [4, 4, inputDepth]; outputDepth = 3; fSize = 1; pad = 'same'; strides = [1, 1]; x = tf.tensor3d([ 10, 30, 50, 70, 20, 40, 60, 80, -10, -30, -50, -70, -20, -40, -60, -80 ], inputShape); w = tf.tensor4d([1, 0.5, 1], [fSize, fSize, inputDepth, outputDepth]); alpha = tf.tensor3d([0.5], [1, 1, inputDepth]); result = tf.fused.conv2d({ x: x, filter: w, strides: strides, pad: pad, dataFormat: 'NHWC', dilations: [1, 1], activation: 'prelu', preluActivationWeights: alpha }); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 10, 5, 10, 30, 15, 30, 50, 25, 50, 70, 35, 70, 20, 10, 20, 40, 20, 40, 60, 30, 60, 80, 40, 80, -5, -2.5, -5, -15, -7.5, -15, -25, -12.5, -25, -35, -17.5, -35, -10, -5, -10, -20, -10, -20, -30, -15, -30, -40, -20, -40 ]]); return [2 /*return*/]; } }); }); }); it('im2row with broadcasted bias and relu', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, pad, strides, x, w, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 1; inputShape = [4, 4, inputDepth]; outputDepth = 3; fSize = 1; pad = 'same'; strides = [2, 2]; x = tf.tensor3d([ 10, 30, 50, 70, 20, 40, 60, 80, -10, -30, -50, -70, -20, -40, -60, -80 ], inputShape); w = tf.tensor4d([1, 0.5, 1], [fSize, fSize, inputDepth, outputDepth]); result = tf.fused.conv2d({ x: x, filter: w, strides: strides, pad: pad, dataFormat: 'NHWC', dilations: [1, 1], bias: tf.scalar(5), activation: 'relu' }); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [15, 10, 15, 55, 30, 55, 0, 0, 0, 0, 0, 0]]); return [2 /*return*/]; } }); }); }); it('gradient x=[2,3,3,1] f=[2,2,1,1] s=1 p=0', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, outputDepth, inputShape, filterSize, strides, pad, filterShape, filter, x, dy, grads, _a, dx, dfilter, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: inputDepth = 1; outputDepth = 1; inputShape = [2, 3, 3, inputDepth]; filterSize = 2; strides = 1; pad = 0; filterShape = [filterSize, filterSize, inputDepth, outputDepth]; filter = tf.tensor4d([-1, 1, -2, 0.5], filterShape); x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9], inputShape); dy = tf.tensor4d([3, 1, 2, 0, 3, 1, 2, 0], [2, 2, 2, 1]); grads = tf.grads(function (x, filter) { return tf.fused.conv2d({ x: x, filter: filter, strides: strides, pad: pad }); }); _a = grads([x, filter], dy), dx = _a[0], dfilter = _a[1]; expect(dx.shape).toEqual(x.shape); _b = test_util_1.expectArraysClose; return [4 /*yield*/, dx.data()]; case 1: _b.apply(void 0, [_d.sent(), [-3, 2, 1, -8, 1.5, 0.5, -4, 1, 0, -3, 2, 1, -8, 1.5, 0.5, -4, 1, 0]]); expect(dfilter.shape).toEqual(filterShape); _c = test_util_1.expectArraysClose; return [4 /*yield*/, dfilter.data()]; case 2: _c.apply(void 0, [_d.sent(), [26, 38, 62, 74]]); return [2 /*return*/]; } }); }); }); it('gradient x=[2,3,3,1] f=[2,2,1,1] s=1 p=0 with bias', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, outputDepth, inputShape, filterSize, strides, pad, filterShape, filter, bias, x, dy, fusedGrads, _a, dxFused, dfilterFused, dbiasFused, grads, _b, dx, dfilter, dbias, _c, _d, _e, _f, _g, _h; return __generator(this, function (_j) { switch (_j.label) { case 0: inputDepth = 1; outputDepth = 1; inputShape = [2, 3, 3, inputDepth]; filterSize = 2; strides = 1; pad = 0; filterShape = [filterSize, filterSize, inputDepth, outputDepth]; filter = tf.tensor4d([-1, 1, -2, 0.5], filterShape); bias = tf.ones([2, 2, 2, 1]); x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9], inputShape); dy = tf.tensor4d([3, 1, 2, 0, 3, 1, 2, 0], [2, 2, 2, 1]); fusedGrads = tf.grads(function (x, w, b) { return tf.fused.conv2d({ x: x, filter: w, strides: strides, pad: pad, dataFormat: 'NHWC', dilations: [1, 1], bias: b }); }); _a = fusedGrads([x, filter, bias], dy), dxFused = _a[0], dfilterFused = _a[1], dbiasFused = _a[2]; grads = tf.grads(function (x, filter, bias) { var conv = tf.conv2d(x, filter, strides, pad); var sum = tf.add(conv, bias); return sum; }); _b = grads([x, filter, bias], dy), dx = _b[0], dfilter = _b[1], dbias = _b[2]; _c = test_util_1.expectArraysClose; return [4 /*yield*/, dxFused.array()]; case 1: _d = [_j.sent()]; return [4 /*yield*/, dx.array()]; case 2: _c.apply(void 0, _d.concat([_j.sent()])); _e = test_util_1.expectArraysClose; return [4 /*yield*/, dfilterFused.array()]; case 3: _f = [_j.sent()]; return [4 /*yield*/, dfilter.array()]; case 4: _e.apply(void 0, _f.concat([_j.sent()])); _g = test_util_1.expectArraysClose; return [4 /*yield*/, dbiasFused.array()]; case 5: _h = [_j.sent()]; return [4 /*yield*/, dbias.array()]; case 6: _g.apply(void 0, _h.concat([_j.sent()])); return [2 /*return*/]; } }); }); }); it('gradient x=[2,3,3,1] f=[2,2,1,1] s=1 p=0 with bias and relu', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, outputDepth, inputShape, filterSize, strides, pad, filterShape, filter, bias, x, dy, fusedGrads, _a, dxFused, dfilterFused, dbiasFused, grads, _b, dx, dfilter, dbias, _c, _d, _e, _f, _g, _h; return __generator(this, function (_j) { switch (_j.label) { case 0: inputDepth = 1; outputDepth = 1; inputShape = [2, 3, 3, inputDepth]; filterSize = 2; strides = 1; pad = 0; filterShape = [filterSize, filterSize, inputDepth, outputDepth]; filter = tf.tensor4d([-1, 1, -2, 0.5], filterShape); bias = tf.ones([2, 2, 2, 1]); x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9], inputShape); dy = tf.tensor4d([3, 1, 2, 0, 3, 1, 2, 0], [2, 2, 2, 1]); fusedGrads = tf.grads(function (x, w, b) { return tf.fused.conv2d({ x: x, filter: w, strides: strides, pad: pad, dataFormat: 'NHWC', dilations: [1, 1], bias: b, activation: 'relu' }); }); _a = fusedGrads([x, filter, bias], dy), dxFused = _a[0], dfilterFused = _a[1], dbiasFused = _a[2]; grads = tf.grads(function (x, filter, bias) { var conv = tf.conv2d(x, filter, strides, pad); var sum = tf.add(conv, bias); return tf.relu(sum); }); _b = grads([x, filter, bias], dy), dx = _b[0], dfilter = _b[1], dbias = _b[2]; _c = test_util_1.expectArraysClose; return [4 /*yield*/, dxFused.array()]; case 1: _d = [_j.sent()]; return [4 /*yield*/, dx.array()]; case 2: _c.apply(void 0, _d.concat([_j.sent()])); _e = test_util_1.expectArraysClose; return [4 /*yield*/, dfilterFused.array()]; case 3: _f = [_j.sent()]; return [4 /*yield*/, dfilter.array()]; case 4: _e.apply(void 0, _f.concat([_j.sent()])); _g = test_util_1.expectArraysClose; return [4 /*yield*/, dbiasFused.array()]; case 5: _h = [_j.sent()]; return [4 /*yield*/, dbias.array()]; case 6: _g.apply(void 0, _h.concat([_j.sent()])); return [2 /*return*/]; } }); }); }); it('gradient x=[2,3,3,1] f=[2,2,1,1] s=1 p=0 with bias and elu', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, outputDepth, inputShape, filterSize, strides, pad, filterShape, filter, bias, x, dy, fusedGrads, _a, dxFused, dfilterFused, dbiasFused, grads, _b, dx, dfilter, dbias, _c, _d, _e, _f, _g, _h; return __generator(this, function (_j) { switch (_j.label) { case 0: inputDepth = 1; outputDepth = 1; inputShape = [2, 3, 3, inputDepth]; filterSize = 2; strides = 1; pad = 0; filterShape = [filterSize, filterSize, inputDepth, outputDepth]; filter = tf.tensor4d([-1, 1, -2, 0.5], filterShape); bias = tf.ones([2, 2, 2, 1]); x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9], inputShape); dy = tf.tensor4d([3, 1, 2, 0, 3, 1, 2, 0], [2, 2, 2, 1]); fusedGrads = tf.grads(function (x, w, b) { return tf.fused.conv2d({ x: x, filter: w, strides: strides, pad: pad, dataFormat: 'NHWC', dilations: [1, 1], bias: b, activation: 'elu' }); }); _a = fusedGrads([x, filter, bias], dy), dxFused = _a[0], dfilterFused = _a[1], dbiasFused = _a[2]; grads = tf.grads(function (x, filter, bias) { var conv = tf.conv2d(x, filter, strides, pad); var sum = tf.add(conv, bias); return tf.elu(sum); }); _b = grads([x, filter, bias], dy), dx = _b[0], dfilter = _b[1], dbias = _b[2]; _c = test_util_1.expectArraysClose; return [4 /*yield*/, dxFused.array()]; case 1: _d = [_j.sent()]; return [4 /*yield*/, dx.array()]; case 2: _c.apply(void 0, _d.concat([_j.sent()])); _e = test_util_1.expectArraysClose; return [4 /*yield*/, dfilterFused.array()]; case 3: _f = [_j.sent()]; return [4 /*yield*/, dfilter.array()]; case 4: _e.apply(void 0, _f.concat([_j.sent()])); _g = test_util_1.expectArraysClose; return [4 /*yield*/, dbiasFused.array()]; case 5: _h = [_j.sent()]; return [4 /*yield*/, dbias.array()]; case 6: _g.apply(void 0, _h.concat([_j.sent()])); return [2 /*return*/]; } }); }); }); it('fused matmul with relu6 and gradients', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, transposeA, transposeB, fusedGrads, _a, fusedDa, fusedDb, grads, _b, da, db, _c, _d, _e, _f; return __generator(this, function (_g) { switch (_g.label) { case 0: a = tf.tensor2d([1, 2, 3, 10, 20, -30], [2, 3]); b = tf.tensor2d([2, 3, 4, -1, 2, 3], [3, 2]); dy = tf.tensor2d([1, 10, 20, 30], [2, 2]); transposeA = false; transposeB = false; fusedGrads = tf.grads(function (a, b) { return tf.fused.matMul({ a: a, b: b, transposeA: transposeA, transposeB: transposeB, bias: null, activation: 'relu6' }); }); _a = fusedGrads([a, b], dy), fusedDa = _a[0], fusedDb = _a[1]; grads = tf.grads(function (a, b) { var prod = tf.matMul(a, b, transposeA, transposeB); return tf.relu6(prod); }); _b = grads([a, b], dy), da = _b[0], db = _b[1]; _c = test_util_1.expectArraysClose; return [4 /*yield*/, da.array()]; case 1: _d = [_g.sent()]; return [4 /*yield*/, fusedDa.array()]; case 2: _c.apply(void 0, _d.concat([_g.sent()])); _e = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 3: _f = [_g.sent()]; return [4 /*yield*/, fusedDb.array()]; case 4: _e.apply(void 0, _f.concat([_g.sent()])); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=fused_test.js.map