"use strict"; var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('nonMaxSuppression', jasmine_util_1.ALL_ENVS, function () { describe('NonMaxSuppression Basic', function () { it('select from three clusters', function () { return __awaiter(_this, void 0, void 0, function () { var boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, indices, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: boxes = tf.tensor2d([ 0, 0, 1, 1, 0, 0.1, 1, 1.1, 0, -0.1, 1, 0.9, 0, 10, 1, 11, 0, 10.1, 1, 11.1, 0, 100, 1, 101 ], [6, 4]); scores = tf.tensor1d([0.9, 0.75, 0.6, 0.95, 0.5, 0.3]); maxOutputSize = 3; iouThreshold = 0.5; scoreThreshold = 0; indices = tf.image.nonMaxSuppression(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold); expect(indices.shape).toEqual([3]); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, indices.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, 0, 5]]); return [2 /*return*/]; } }); }); }); it('select from three clusters flipped coordinates', function () { return __awaiter(_this, void 0, void 0, function () { var boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, indices, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: boxes = tf.tensor2d([ 1, 1, 0, 0, 0, 0.1, 1, 1.1, 0, .9, 1, -0.1, 0, 10, 1, 11, 1, 10.1, 0, 11.1, 1, 101, 0, 100 ], [6, 4]); scores = tf.tensor1d([0.9, 0.75, 0.6, 0.95, 0.5, 0.3]); maxOutputSize = 3; iouThreshold = 0.5; scoreThreshold = 0; indices = tf.image.nonMaxSuppression(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold); expect(indices.shape).toEqual([3]); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, indices.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, 0, 5]]); return [2 /*return*/]; } }); }); }); it('select at most two boxes from three clusters', function () { return __awaiter(_this, void 0, void 0, function () { var boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, indices, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: boxes = tf.tensor2d([ 0, 0, 1, 1, 0, 0.1, 1, 1.1, 0, -0.1, 1, 0.9, 0, 10, 1, 11, 0, 10.1, 1, 11.1, 0, 100, 1, 101 ], [6, 4]); scores = tf.tensor1d([0.9, 0.75, 0.6, 0.95, 0.5, 0.3]); maxOutputSize = 2; iouThreshold = 0.5; scoreThreshold = 0; indices = tf.image.nonMaxSuppression(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold); expect(indices.shape).toEqual([2]); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, indices.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, 0]]); return [2 /*return*/]; } }); }); }); it('select at most thirty boxes from three clusters', function () { return __awaiter(_this, void 0, void 0, function () { var boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, indices, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: boxes = tf.tensor2d([ 0, 0, 1, 1, 0, 0.1, 1, 1.1, 0, -0.1, 1, 0.9, 0, 10, 1, 11, 0, 10.1, 1, 11.1, 0, 100, 1, 101 ], [6, 4]); scores = tf.tensor1d([0.9, 0.75, 0.6, 0.95, 0.5, 0.3]); maxOutputSize = 30; iouThreshold = 0.5; scoreThreshold = 0; indices = tf.image.nonMaxSuppression(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold); expect(indices.shape).toEqual([3]); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, indices.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, 0, 5]]); return [2 /*return*/]; } }); }); }); it('select single box', function () { return __awaiter(_this, void 0, void 0, function () { var boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, indices, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: boxes = tf.tensor2d([0, 0, 1, 1], [1, 4]); scores = tf.tensor1d([0.9]); maxOutputSize = 3; iouThreshold = 0.5; scoreThreshold = 0; indices = tf.image.nonMaxSuppression(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold); expect(indices.shape).toEqual([1]); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, indices.data()]; case 1: _a.apply(void 0, [_b.sent(), [0]]); return [2 /*return*/]; } }); }); }); it('select from ten identical boxes', function () { return __awaiter(_this, void 0, void 0, function () { var numBoxes, corners, boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, indices, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: numBoxes = 10; corners = new Array(numBoxes) .fill(0) .map(function (_) { return [0, 0, 1, 1]; }) .reduce(function (arr, curr) { return arr.concat(curr); }); boxes = tf.tensor2d(corners, [numBoxes, 4]); scores = tf.tensor1d(Array(numBoxes).fill(0.9)); maxOutputSize = 3; iouThreshold = 0.5; scoreThreshold = 0; indices = tf.image.nonMaxSuppression(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold); expect(indices.shape).toEqual([1]); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, indices.data()]; case 1: _a.apply(void 0, [_b.sent(), [0]]); return [2 /*return*/]; } }); }); }); it('inconsistent box and score shapes', function () { var boxes = tf.tensor2d([ 0, 0, 1, 1, 0, 0.1, 1, 1.1, 0, -0.1, 1, 0.9, 0, 10, 1, 11, 0, 10.1, 1, 11.1, 0, 100, 1, 101 ], [6, 4]); var scores = tf.tensor1d([0.9, 0.75, 0.6, 0.95, 0.5]); var maxOutputSize = 30; var iouThreshold = 0.5; var scoreThreshold = 0; expect(function () { return tf.image.nonMaxSuppression(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold); }) .toThrowError(/scores has incompatible shape with boxes/); }); it('invalid iou threshold', function () { var boxes = tf.tensor2d([0, 0, 1, 1], [1, 4]); var scores = tf.tensor1d([0.9]); var maxOutputSize = 3; var iouThreshold = 1.2; var scoreThreshold = 0; expect(function () { return tf.image.nonMaxSuppression(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold); }) .toThrowError(/iouThreshold must be in \[0, 1\]/); }); it('empty input', function () { return __awaiter(_this, void 0, void 0, function () { var boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, indices, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: boxes = tf.tensor2d([], [0, 4]); scores = tf.tensor1d([]); maxOutputSize = 3; iouThreshold = 0.5; scoreThreshold = 0; indices = tf.image.nonMaxSuppression(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold); expect(indices.shape).toEqual([0]); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, indices.data()]; case 1: _a.apply(void 0, [_b.sent(), []]); return [2 /*return*/]; } }); }); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var boxes, scores, indices, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: boxes = [[0, 0, 1, 1], [0, 1, 1, 2]]; scores = [1, 2]; indices = tf.image.nonMaxSuppression(boxes, scores, 10); expect(indices.shape).toEqual([2]); expect(indices.dtype).toEqual('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, indices.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 0]]); return [2 /*return*/]; } }); }); }); }); describe('NonMaxSuppressionWithScore', function () { it('select from three clusters with SoftNMS', function () { return __awaiter(_this, void 0, void 0, function () { var boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma, _a, selectedIndices, selectedScores, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: boxes = tf.tensor2d([ 0, 0, 1, 1, 0, 0.1, 1, 1.1, 0, -0.1, 1, 0.9, 0, 10, 1, 11, 0, 10.1, 1, 11.1, 0, 100, 1, 101 ], [6, 4]); scores = tf.tensor1d([0.9, 0.75, 0.6, 0.95, 0.5, 0.3]); maxOutputSize = 6; iouThreshold = 1.0; scoreThreshold = 0; softNmsSigma = 0.5; _a = tf.image.nonMaxSuppressionWithScore(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma), selectedIndices = _a.selectedIndices, selectedScores = _a.selectedScores; _b = test_util_1.expectArraysEqual; return [4 /*yield*/, selectedIndices.data()]; case 1: _b.apply(void 0, [_d.sent(), [3, 0, 1, 5, 4, 2]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, selectedScores.data()]; case 2: _c.apply(void 0, [_d.sent(), [0.95, 0.9, 0.384, 0.3, 0.256, 0.197]]); return [2 /*return*/]; } }); }); }); }); }); jasmine_util_1.describeWithFlags('nonMaxSuppressionAsync', jasmine_util_1.ALL_ENVS, function () { describe('NonMaxSuppressionAsync basic', function () { it('select from three clusters', function () { return __awaiter(_this, void 0, void 0, function () { var boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, indices, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: boxes = tf.tensor2d([ 0, 0, 1, 1, 0, 0.1, 1, 1.1, 0, -0.1, 1, 0.9, 0, 10, 1, 11, 0, 10.1, 1, 11.1, 0, 100, 1, 101 ], [6, 4]); scores = tf.tensor1d([0.9, 0.75, 0.6, 0.95, 0.5, 0.3]); maxOutputSize = 3; iouThreshold = 0.5; scoreThreshold = 0; return [4 /*yield*/, tf.image.nonMaxSuppressionAsync(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold)]; case 1: indices = _b.sent(); expect(indices.shape).toEqual([3]); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, indices.data()]; case 2: _a.apply(void 0, [_b.sent(), [3, 0, 5]]); return [2 /*return*/]; } }); }); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var boxes, scores, indices, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: boxes = [[0, 0, 1, 1], [0, 1, 1, 2]]; scores = [1, 2]; return [4 /*yield*/, tf.image.nonMaxSuppressionAsync(boxes, scores, 10)]; case 1: indices = _b.sent(); expect(indices.shape).toEqual([2]); expect(indices.dtype).toEqual('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, indices.data()]; case 2: _a.apply(void 0, [_b.sent(), [1, 0]]); return [2 /*return*/]; } }); }); }); }); describe('NonMaxSuppressionWithScoreAsync', function () { it('select from three clusters with SoftNMS', function () { return __awaiter(_this, void 0, void 0, function () { var boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma, numTensorsBefore, _a, selectedIndices, selectedScores, numTensorsAfter, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: boxes = tf.tensor2d([ 0, 0, 1, 1, 0, 0.1, 1, 1.1, 0, -0.1, 1, 0.9, 0, 10, 1, 11, 0, 10.1, 1, 11.1, 0, 100, 1, 101 ], [6, 4]); scores = tf.tensor1d([0.9, 0.75, 0.6, 0.95, 0.5, 0.3]); maxOutputSize = 6; iouThreshold = 1.0; scoreThreshold = 0; softNmsSigma = 0.5; numTensorsBefore = tf.memory().numTensors; return [4 /*yield*/, tf.image.nonMaxSuppressionWithScoreAsync(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma)]; case 1: _a = _d.sent(), selectedIndices = _a.selectedIndices, selectedScores = _a.selectedScores; numTensorsAfter = tf.memory().numTensors; _b = test_util_1.expectArraysEqual; return [4 /*yield*/, selectedIndices.data()]; case 2: _b.apply(void 0, [_d.sent(), [3, 0, 1, 5, 4, 2]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, selectedScores.data()]; case 3: _c.apply(void 0, [_d.sent(), [0.95, 0.9, 0.384, 0.3, 0.256, 0.197]]); // The number of tensors should increase by the number of tensors // returned (i.e. selectedIndices and selectedScores). expect(numTensorsAfter).toEqual(numTensorsBefore + 2); return [2 /*return*/]; } }); }); }); }); }); jasmine_util_1.describeWithFlags('cropAndResize', jasmine_util_1.ALL_ENVS, function () { it('1x1-bilinear', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: image = tf.tensor4d([1, 2, 3, 4], [1, 2, 2, 1]); boxes = tf.tensor2d([0, 0, 1, 1], [1, 4]); boxInd = tf.tensor1d([0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [1, 1], 'bilinear', 0); expect(output.shape).toEqual([1, 1, 1, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [2.5]]); return [2 /*return*/]; } }); }); }); it('5x5-bilinear, no change in shape', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: image = tf.ones([1, 5, 5, 3]); boxes = tf.tensor2d([0, 0, 1, 1], [1, 4]); boxInd = tf.tensor1d([0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [5, 5], 'bilinear', 0); expect(output.shape).toEqual([1, 5, 5, 3]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _b = [_c.sent()]; return [4 /*yield*/, image.data()]; case 2: _a.apply(void 0, _b.concat([_c.sent()])); return [2 /*return*/]; } }); }); }); it('5x5-bilinear, just a crop, no resize', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: image = tf.ones([1, 6, 6, 3]); boxes = tf.tensor2d([0.5, 0.5, 1, 1], [1, 4]); boxInd = tf.tensor1d([0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [3, 3], 'bilinear', 0); expect(output.shape).toEqual([1, 3, 3, 3]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _b = [_c.sent()]; return [4 /*yield*/, tf.ones([1, 3, 3, 3]).data()]; case 2: _a.apply(void 0, _b.concat([_c.sent()])); return [2 /*return*/]; } }); }); }); it('1x1-nearest', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: image = tf.tensor4d([1, 2, 3, 4], [1, 2, 2, 1]); boxes = tf.tensor2d([0, 0, 1, 1], [1, 4]); boxInd = tf.tensor1d([0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [1, 1], 'nearest', 0); expect(output.shape).toEqual([1, 1, 1, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [4.0]]); return [2 /*return*/]; } }); }); }); it('1x1Flipped-bilinear', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: image = tf.tensor4d([1, 2, 3, 4], [1, 2, 2, 1]); boxes = tf.tensor2d([1, 1, 0, 0], [1, 4]); boxInd = tf.tensor1d([0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [1, 1], 'bilinear', 0); expect(output.shape).toEqual([1, 1, 1, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [2.5]]); return [2 /*return*/]; } }); }); }); it('1x1Flipped-nearest', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: image = tf.tensor4d([1, 2, 3, 4], [1, 2, 2, 1]); boxes = tf.tensor2d([1, 1, 0, 0], [1, 4]); boxInd = tf.tensor1d([0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [1, 1], 'nearest', 0); expect(output.shape).toEqual([1, 1, 1, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [4.0]]); return [2 /*return*/]; } }); }); }); it('3x3-bilinear', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: image = tf.tensor4d([1, 2, 3, 4], [1, 2, 2, 1]); boxes = tf.tensor2d([0, 0, 1, 1], [1, 4]); boxInd = tf.tensor1d([0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [3, 3], 'bilinear', 0); expect(output.shape).toEqual([1, 3, 3, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 1.5, 2, 2, 2.5, 3, 3, 3.5, 4]]); return [2 /*return*/]; } }); }); }); it('3x3-nearest', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: image = tf.tensor4d([1, 2, 3, 4], [1, 2, 2, 1]); boxes = tf.tensor2d([0, 0, 1, 1], [1, 4]); boxInd = tf.tensor1d([0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [3, 3], 'nearest', 0); expect(output.shape).toEqual([1, 3, 3, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2, 2, 3, 4, 4, 3, 4, 4]]); return [2 /*return*/]; } }); }); }); it('3x3Flipped-bilinear', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: image = tf.tensor4d([1, 2, 3, 4], [1, 2, 2, 1]); boxes = tf.tensor2d([1, 1, 0, 0], [1, 4]); boxInd = tf.tensor1d([0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [3, 3], 'bilinear', 0); expect(output.shape).toEqual([1, 3, 3, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [4, 3.5, 3, 3, 2.5, 2, 2, 1.5, 1]]); return [2 /*return*/]; } }); }); }); it('3x3Flipped-nearest', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: image = tf.tensor4d([1, 2, 3, 4], [1, 2, 2, 1]); boxes = tf.tensor2d([1, 1, 0, 0], [1, 4]); boxInd = tf.tensor1d([0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [3, 3], 'nearest', 0); expect(output.shape).toEqual([1, 3, 3, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [4, 4, 3, 4, 4, 3, 2, 2, 1]]); return [2 /*return*/]; } }); }); }); it('3x3to2x2-bilinear', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: image = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 3, 3, 1]); boxes = tf.tensor2d([0, 0, 1, 1, 0, 0, 0.5, 0.5], [2, 4]); boxInd = tf.tensor1d([0, 0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [2, 2], 'bilinear', 0); expect(output.shape).toEqual([2, 2, 2, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 3, 7, 9, 1, 2, 4, 5]]); return [2 /*return*/]; } }); }); }); it('3x3to2x2-nearest', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: image = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 3, 3, 1]); boxes = tf.tensor2d([0, 0, 1, 1, 0, 0, 0.5, 0.5], [2, 4]); boxInd = tf.tensor1d([0, 0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [2, 2], 'nearest', 0); expect(output.shape).toEqual([2, 2, 2, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 3, 7, 9, 1, 2, 4, 5]]); return [2 /*return*/]; } }); }); }); it('3x3to2x2Flipped-bilinear', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: image = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 3, 3, 1]); boxes = tf.tensor2d([1, 1, 0, 0, 0.5, 0.5, 0, 0], [2, 4]); boxInd = tf.tensor1d([0, 0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [2, 2], 'bilinear', 0); expect(output.shape).toEqual([2, 2, 2, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [9, 7, 3, 1, 5, 4, 2, 1]]); return [2 /*return*/]; } }); }); }); it('3x3to2x2Flipped-nearest', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: image = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 3, 3, 1]); boxes = tf.tensor2d([1, 1, 0, 0, 0.5, 0.5, 0, 0], [2, 4]); boxInd = tf.tensor1d([0, 0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [2, 2], 'nearest', 0); expect(output.shape).toEqual([2, 2, 2, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [9, 7, 3, 1, 5, 4, 2, 1]]); return [2 /*return*/]; } }); }); }); it('3x3-BoxisRectangular', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: image = tf.tensor4d([1, 2, 3, 4], [1, 2, 2, 1]); boxes = tf.tensor2d([0, 0, 1, 1.5], [1, 4]); boxInd = tf.tensor1d([0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [3, 3], 'bilinear', 0); expect(output.shape).toEqual([1, 3, 3, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 1.75, 0, 2, 2.75, 0, 3, 3.75, 0]]); return [2 /*return*/]; } }); }); }); it('3x3-BoxisRectangular-nearest', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: image = tf.tensor4d([1, 2, 3, 4], [1, 2, 2, 1]); boxes = tf.tensor2d([0, 0, 1, 1.5], [1, 4]); boxInd = tf.tensor1d([0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [3, 3], 'nearest', 0); expect(output.shape).toEqual([1, 3, 3, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2, 0, 3, 4, 0, 3, 4, 0]]); return [2 /*return*/]; } }); }); }); it('2x2to3x3-Extrapolated', function () { return __awaiter(_this, void 0, void 0, function () { var val, image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: val = -1; image = tf.tensor4d([1, 2, 3, 4], [1, 2, 2, 1]); boxes = tf.tensor2d([-1, -1, 1, 1], [1, 4]); boxInd = tf.tensor1d([0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [3, 3], 'bilinear', val); expect(output.shape).toEqual([1, 3, 3, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [val, val, val, val, 1, 2, val, 3, 4]]); return [2 /*return*/]; } }); }); }); it('2x2to3x3-Extrapolated-Float', function () { return __awaiter(_this, void 0, void 0, function () { var val, image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: val = -1.5; image = tf.tensor4d([1, 2, 3, 4], [1, 2, 2, 1]); boxes = tf.tensor2d([-1, -1, 1, 1], [1, 4]); boxInd = tf.tensor1d([0], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [3, 3], 'bilinear', val); expect(output.shape).toEqual([1, 3, 3, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [val, val, val, val, 1, 2, val, 3, 4]]); return [2 /*return*/]; } }); }); }); it('2x2to3x3-NoCrop', function () { return __awaiter(_this, void 0, void 0, function () { var val, image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: val = -1.0; image = tf.tensor4d([1, 2, 3, 4], [1, 2, 2, 1]); boxes = tf.tensor2d([], [0, 4]); boxInd = tf.tensor1d([], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [3, 3], 'bilinear', val); expect(output.shape).toEqual([0, 3, 3, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), []]); return [2 /*return*/]; } }); }); }); it('MultipleBoxes-DifferentBoxes', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: image = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8], [2, 2, 2, 1]); boxes = tf.tensor2d([0, 0, 1, 1.5, 0, 0, 1.5, 1], [2, 4]); boxInd = tf.tensor1d([0, 1], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [3, 3], 'bilinear', 0); expect(output.shape).toEqual([2, 3, 3, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 1.75, 0, 2, 2.75, 0, 3, 3.75, 0, 5, 5.5, 6, 6.5, 7, 7.5, 0, 0, 0]]); return [2 /*return*/]; } }); }); }); it('MultipleBoxes-DifferentBoxes-Nearest', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: image = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8], [2, 2, 2, 1]); boxes = tf.tensor2d([0, 0, 1, 1.5, 0, 0, 2, 1], [2, 4]); boxInd = tf.tensor1d([0, 1], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [3, 3], 'nearest', 0); expect(output.shape).toEqual([2, 3, 3, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2, 0, 3, 4, 0, 3, 4, 0, 5, 6, 6, 7, 8, 8, 0, 0, 0]]); return [2 /*return*/]; } }); }); }); it('int32 image returns float output', function () { return __awaiter(_this, void 0, void 0, function () { var image, boxes, boxInd, output, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: image = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8], [2, 2, 2, 1], 'int32'); boxes = tf.tensor2d([0, 0, 1, 1.5, 0, 0, 1.5, 1], [2, 4]); boxInd = tf.tensor1d([0, 1], 'int32'); output = tf.image.cropAndResize(image, boxes, boxInd, [3, 3], 'bilinear', 0); expect(output.shape).toEqual([2, 3, 3, 1]); expect(output.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 1.75, 0, 2, 2.75, 0, 3, 3.75, 0, 5, 5.5, 6, 6.5, 7, 7.5, 0, 0, 0]]); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=image_ops_test.js.map