"use strict"; /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); /** * Linear algebra ops. */ var engine_1 = require("../engine"); var globals_1 = require("../globals"); var tensor_util_env_1 = require("../tensor_util_env"); var util_1 = require("../util"); var array_ops_1 = require("./array_ops"); var binary_ops_1 = require("./binary_ops"); var concat_split_1 = require("./concat_split"); var logical_ops_1 = require("./logical_ops"); var norm_1 = require("./norm"); var operation_1 = require("./operation"); var reduction_ops_1 = require("./reduction_ops"); var tensor_ops_1 = require("./tensor_ops"); /** * Copy a tensor setting everything outside a central band in each innermost * matrix to zero. * * The band part is computed as follows: Assume input has `k` dimensions * `[I, J, K, ..., M, N]`, then the output is a tensor with the same shape where * `band[i, j, k, ..., m, n] = in_band(m, n) * input[i, j, k, ..., m, n]`. * The indicator function * `in_band(m, n) = (num_lower < 0 || (m-n) <= num_lower))` * `&& (num_upper < 0 || (n-m) <= num_upper)` * * ```js * const x = tf.tensor2d([[ 0, 1, 2, 3], * [-1, 0, 1, 2], * [-2, -1, 0, 1], * [-3, -2, -1, 0]]); * let y = tf.linalg.bandPart(x, 1, -1); * y.print(); // [[ 0, 1, 2, 3], * // [-1, 0, 1, 2], * // [ 0, -1, 0, 1], * // [ 0, 0 , -1, 0]] * let z = tf.linalg.bandPart(x, 2, 1); * z.print(); // [[ 0, 1, 0, 0], * // [-1, 0, 1, 0], * // [-2, -1, 0, 1], * // [ 0, -2, -1, 0]] * ``` * * @param x Rank `k` tensor * @param numLower Number of subdiagonals to keep. * If negative, keep entire lower triangle. * @param numUpper Number of subdiagonals to keep. * If negative, keep entire upper triangle. * @returns Rank `k` tensor of the same shape as input. * The extracted banded tensor. */ /** * @doc {heading:'Operations', * subheading:'Linear Algebra', * namespace:'linalg'} */ function bandPart_(a, numLower, numUpper) { if (numLower % 1 !== 0) { throw new Error("bandPart(): numLower must be an integer, got " + numLower + "."); } if (numUpper % 1 !== 0) { throw new Error("bandPart(): numUpper must be an integer, got " + numUpper + "."); } var $a = tensor_util_env_1.convertToTensor(a, 'a', 'bandPart'); if ($a.rank < 2) { throw new Error("bandPart(): Rank must be at least 2, got " + $a.rank + "."); } var shape = $a.shape, _a = $a.shape.slice(-2), M = _a[0], N = _a[1]; if (!(numLower <= M)) { throw new Error("bandPart(): numLower (" + numLower + ")" + (" must not be greater than the number of rows (" + M + ").")); } if (!(numUpper <= N)) { throw new Error("bandPart(): numUpper (" + numUpper + ")" + (" must not be greater than the number of columns (" + N + ").")); } if (numLower < 0) { numLower = M; } if (numUpper < 0) { numUpper = N; } var i = tensor_ops_1.range(0, M, 1, 'int32').reshape([-1, 1]), j = tensor_ops_1.range(0, N, 1, 'int32'), ij = binary_ops_1.sub(i, j); var inBand = logical_ops_1.logicalAnd(ij.lessEqual(tensor_ops_1.scalar(+numLower, 'int32')), ij.greaterEqual(tensor_ops_1.scalar(-numUpper, 'int32'))); var zero = tensor_ops_1.zeros([M, N], $a.dtype); return array_ops_1.stack(array_ops_1.unstack($a.reshape([-1, M, N])).map(function (mat) { return logical_ops_1.where(inBand, mat, zero); })).reshape(shape); } /** * Gram-Schmidt orthogonalization. * * ```js * const x = tf.tensor2d([[1, 2], [3, 4]]); * let y = tf.linalg.gramSchmidt(x); * y.print(); * console.log('Othogonalized:'); * y.dot(y.transpose()).print(); // should be nearly the identity matrix. * console.log('First row direction maintained:'); * const data = await y.array(); * console.log(data[0][1] / data[0][0]); // should be nearly 2. * ``` * * @param xs The vectors to be orthogonalized, in one of the two following * formats: * - An Array of `tf.Tensor1D`. * - A `tf.Tensor2D`, i.e., a matrix, in which case the vectors are the rows * of `xs`. * In each case, all the vectors must have the same length and the length * must be greater than or equal to the number of vectors. * @returns The orthogonalized and normalized vectors or matrix. * Orthogonalization means that the vectors or the rows of the matrix * are orthogonal (zero inner products). Normalization means that each * vector or each row of the matrix has an L2 norm that equals `1`. */ /** * @doc {heading:'Operations', * subheading:'Linear Algebra', * namespace:'linalg'} */ function gramSchmidt_(xs) { var inputIsTensor2D; if (Array.isArray(xs)) { inputIsTensor2D = false; util_1.assert(xs != null && xs.length > 0, function () { return 'Gram-Schmidt process: input must not be null, undefined, or ' + 'empty'; }); var dim_1 = xs[0].shape[0]; var _loop_1 = function (i) { util_1.assert(xs[i].shape[0] === dim_1, function () { return 'Gram-Schmidt: Non-unique lengths found in the input vectors: ' + ("(" + xs[i].shape[0] + " vs. " + dim_1 + ")"); }); }; for (var i = 1; i < xs.length; ++i) { _loop_1(i); } } else { inputIsTensor2D = true; xs = concat_split_1.split(xs, xs.shape[0], 0).map(function (x) { return array_ops_1.squeeze(x, [0]); }); } util_1.assert(xs.length <= xs[0].shape[0], function () { return "Gram-Schmidt: Number of vectors (" + xs.length + ") exceeds " + ("number of dimensions (" + xs[0].shape[0] + ")."); }); var ys = []; var xs1d = xs; var _loop_2 = function (i) { ys.push(engine_1.ENGINE.tidy(function () { var x = xs1d[i]; if (i > 0) { for (var j = 0; j < i; ++j) { var proj = reduction_ops_1.sum(ys[j].mulStrict(x)).mul(ys[j]); x = x.sub(proj); } } return x.div(norm_1.norm(x, 'euclidean')); })); }; for (var i = 0; i < xs.length; ++i) { _loop_2(i); } if (inputIsTensor2D) { return array_ops_1.stack(ys, 0); } else { return ys; } } /** * Compute QR decomposition of m-by-n matrix using Householder transformation. * * Implementation based on * [http://www.cs.cornell.edu/~bindel/class/cs6210-f09/lec18.pdf] * (http://www.cs.cornell.edu/~bindel/class/cs6210-f09/lec18.pdf) * * ```js * const a = tf.tensor2d([[1, 2], [3, 4]]); * let [q, r] = tf.linalg.qr(a); * console.log('Q'); * q.print(); * console.log('R'); * r.print(); * console.log('Orthogonalized'); * q.dot(q.transpose()).print() // should be nearly the identity matrix. * console.log('Reconstructed'); * q.dot(r).print(); // should be nearly [[1, 2], [3, 4]]; * ``` * * @param x The `tf.Tensor` to be QR-decomposed. Must have rank >= 2. Suppose * it has the shape `[..., M, N]`. * @param fullMatrices An optional boolean parameter. Defaults to `false`. * If `true`, compute full-sized `Q`. If `false` (the default), * compute only the leading N columns of `Q` and `R`. * @returns An `Array` of two `tf.Tensor`s: `[Q, R]`. `Q` is a unitary matrix, * i.e., its columns all have unit norm and are mutually orthogonal. * If `M >= N`, * If `fullMatrices` is `false` (default), * - `Q` has a shape of `[..., M, N]`, * - `R` has a shape of `[..., N, N]`. * If `fullMatrices` is `true` (default), * - `Q` has a shape of `[..., M, M]`, * - `R` has a shape of `[..., M, N]`. * If `M < N`, * - `Q` has a shape of `[..., M, M]`, * - `R` has a shape of `[..., M, N]`. * @throws If the rank of `x` is less than 2. */ /** * @doc {heading:'Operations', * subheading:'Linear Algebra', * namespace:'linalg'} */ function qr_(x, fullMatrices) { if (fullMatrices === void 0) { fullMatrices = false; } if (x.rank < 2) { throw new Error("qr() requires input tensor to have a rank >= 2, but got rank " + x.rank); } else if (x.rank === 2) { return qr2d(x, fullMatrices); } else { // Rank > 2. // TODO(cais): Below we split the input into individual 2D tensors, // perform QR decomposition on them and then stack the results back // together. We should explore whether this can be parallelized. var outerDimsProd = x.shape.slice(0, x.shape.length - 2) .reduce(function (value, prev) { return value * prev; }); var x2ds = array_ops_1.unstack(x.reshape([ outerDimsProd, x.shape[x.shape.length - 2], x.shape[x.shape.length - 1] ]), 0); var q2ds_1 = []; var r2ds_1 = []; x2ds.forEach(function (x2d) { var _a = qr2d(x2d, fullMatrices), q2d = _a[0], r2d = _a[1]; q2ds_1.push(q2d); r2ds_1.push(r2d); }); var q = array_ops_1.stack(q2ds_1, 0).reshape(x.shape); var r = array_ops_1.stack(r2ds_1, 0).reshape(x.shape); return [q, r]; } } function qr2d(x, fullMatrices) { if (fullMatrices === void 0) { fullMatrices = false; } return engine_1.ENGINE.tidy(function () { if (x.shape.length !== 2) { throw new Error("qr2d() requires a 2D Tensor, but got a " + x.shape.length + "D Tensor."); } var m = x.shape[0]; var n = x.shape[1]; var q = array_ops_1.eye(m); // Orthogonal transform so far. var r = x.clone(); // Transformed matrix so far. var one2D = tensor_ops_1.tensor2d([[1]], [1, 1]); var w = one2D.clone(); var iters = m >= n ? n : m; var _loop_3 = function (j) { var _a; // This tidy within the for-loop ensures we clean up temporary // tensors as soon as they are no longer needed. var rTemp = r; var wTemp = w; var qTemp = q; _a = engine_1.ENGINE.tidy(function () { // Find H = I - tau * w * w', to put zeros below R(j, j). var rjEnd1 = r.slice([j, j], [m - j, 1]); var normX = rjEnd1.norm(); var rjj = r.slice([j, j], [1, 1]); // The sign() function returns 0 on 0, which causes division by zero. var s = tensor_ops_1.tensor2d([[-1]]).where(rjj.greater(0), tensor_ops_1.tensor2d([[1]])); var u1 = rjj.sub(s.mul(normX)); var wPre = rjEnd1.div(u1); if (wPre.shape[0] === 1) { w = one2D.clone(); } else { w = one2D.concat(wPre.slice([1, 0], [wPre.shape[0] - 1, wPre.shape[1]]), 0); } var tau = s.matMul(u1).div(normX).neg(); // -- R := HR, Q := QH. var rjEndAll = r.slice([j, 0], [m - j, n]); var tauTimesW = tau.mul(w); if (j === 0) { r = rjEndAll.sub(tauTimesW.matMul(w.transpose().matMul(rjEndAll))); } else { var rTimesTau = rjEndAll.sub(tauTimesW.matMul(w.transpose().matMul(rjEndAll))); r = r.slice([0, 0], [j, n]).concat(rTimesTau, 0); } var qAllJEnd = q.slice([0, j], [m, q.shape[1] - j]); if (j === 0) { q = qAllJEnd.sub(qAllJEnd.matMul(w).matMul(tauTimesW.transpose())); } else { var qTimesTau = qAllJEnd.sub(qAllJEnd.matMul(w).matMul(tauTimesW.transpose())); q = q.slice([0, 0], [m, j]).concat(qTimesTau, 1); } return [w, r, q]; }), w = _a[0], r = _a[1], q = _a[2]; globals_1.dispose([rTemp, wTemp, qTemp]); }; for (var j = 0; j < iters; ++j) { _loop_3(j); } if (!fullMatrices && m > n) { q = q.slice([0, 0], [m, n]); r = r.slice([0, 0], [n, n]); } return [q, r]; }); } exports.bandPart = operation_1.op({ bandPart_: bandPart_ }); exports.gramSchmidt = operation_1.op({ gramSchmidt_: gramSchmidt_ }); exports.qr = operation_1.op({ qr_: qr_ }); //# sourceMappingURL=linalg_ops.js.map