"use strict"; /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); var ops_1 = require("./ops"); jasmine_util_1.describeWithFlags('bandPart', jasmine_util_1.ALL_ENVS, function () { it('keeps tensor unchanged', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = ops_1.tensor2d([1, 1, 1, 1, 1, 1, 1, 1, 1], [3, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.linalg.bandPart(x, -1, -1).array()]; case 1: _a.apply(void 0, [_b.sent(), [[1, 1, 1], [1, 1, 1], [1, 1, 1]]]); return [2 /*return*/]; } }); }); }); it('upper triangular matrix', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = ops_1.tensor2d([1, 1, 1, 1, 1, 1, 1, 1, 1], [3, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.linalg.bandPart(x, 0, -1).array()]; case 1: _a.apply(void 0, [_b.sent(), [[1, 1, 1], [0, 1, 1], [0, 0, 1]]]); return [2 /*return*/]; } }); }); }); it('lower triangular matrix', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = ops_1.tensor2d([1, 1, 1, 1, 1, 1, 1, 1, 1], [3, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.linalg.bandPart(x, -1, 0).array()]; case 1: _a.apply(void 0, [_b.sent(), [[1, 0, 0], [1, 1, 0], [1, 1, 1]]]); return [2 /*return*/]; } }); }); }); it('diagonal elements', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = ops_1.tensor2d([1, 1, 1, 1, 1, 1, 1, 1, 1], [3, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.linalg.bandPart(x, 0, 0).array()]; case 1: _a.apply(void 0, [_b.sent(), [[1, 0, 0], [0, 1, 0], [0, 0, 1]]]); return [2 /*return*/]; } }); }); }); it('lower triangular elements', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = ops_1.tensor2d([1, 1, 1, 1, 1, 1, 1, 1, 1], [3, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.linalg.bandPart(x, 1, 0).array()]; case 1: _a.apply(void 0, [_b.sent(), [[1, 0, 0], [1, 1, 0], [0, 1, 1]]]); return [2 /*return*/]; } }); }); }); it('upper triangular elements', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = ops_1.tensor2d([1, 1, 1, 1, 1, 1, 1, 1, 1], [3, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.linalg.bandPart(x, 0, 1).array()]; case 1: _a.apply(void 0, [_b.sent(), [[1, 1, 0], [0, 1, 1], [0, 0, 1]]]); return [2 /*return*/]; } }); }); }); it('4X4 matrix - tensorflow python examples', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: x = ops_1.tensor2d([[0, 1, 2, 3], [-1, 0, 1, 2], [-2, -1, 0, 1], [-3, -2, -1, 0]]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.linalg.bandPart(x, 1, -1).array()]; case 1: _a.apply(void 0, [_c.sent(), [[0, 1, 2, 3], [-1, 0, 1, 2], [0, -1, 0, 1], [0, 0, -1, 0]]]); _b = test_util_1.expectArraysClose; return [4 /*yield*/, tf.linalg.bandPart(x, 2, 1).array()]; case 2: _b.apply(void 0, [_c.sent(), [[0, 1, 0, 0], [-1, 0, 1, 0], [-2, -1, 0, 1], [0, -2, -1, 0]]]); return [2 /*return*/]; } }); }); }); it('3 dimensional matrix', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = ops_1.tensor3d([[[1, 1], [1, 1]], [[1, 1], [1, 1]]]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.linalg.bandPart(x, 0, 0).array()]; case 1: _a.apply(void 0, [_b.sent(), [[[1, 0], [0, 1]], [[1, 0], [0, 1]]]]); return [2 /*return*/]; } }); }); }); it('2X3X3 tensor', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = ops_1.tensor3d([[[1, 1, 1], [1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1]]]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.linalg.bandPart(x, 1, 2).array()]; case 1: _a.apply(void 0, [_b.sent(), [[[1, 1, 1], [1, 1, 1], [0, 1, 1]], [[1, 1, 1], [1, 1, 1], [0, 1, 1]]]]); return [2 /*return*/]; } }); }); }); var la = tf.linalg; it('fails for scalar', function () { return __awaiter(_this, void 0, void 0, function () { var x; return __generator(this, function (_a) { x = ops_1.scalar(1); expect(function () { return la.bandPart(x, 1, 2); }).toThrowError(/bandPart.*rank/i); return [2 /*return*/]; }); }); }); it('fails for 1D tensor', function () { return __awaiter(_this, void 0, void 0, function () { var x; return __generator(this, function (_a) { x = ops_1.tensor1d([1, 2, 3, 4, 5]); expect(function () { return la.bandPart(x, 1, 2); }).toThrowError(/bandPart.*rank/i); return [2 /*return*/]; }); }); }); it('fails if numLower or numUpper too large', function () { return __awaiter(_this, void 0, void 0, function () { var a, _loop_1, _i, _a, numLower, _loop_2, _b, _c, numLower, _loop_3, _d, _e, numLower; return __generator(this, function (_f) { a = tf.tensor2d([[1, 2, 3], [4, 5, 6]]); _loop_1 = function (numLower) { var _loop_4 = function (numUpper) { expect(function () { return tf.linalg.bandPart(a, numLower, numUpper); }) .toThrowError(/bandPart.*numLower/i); }; for (var _i = 0, _a = [-1, 0, 1, 2]; _i < _a.length; _i++) { var numUpper = _a[_i]; _loop_4(numUpper); } }; for (_i = 0, _a = [3, 5, 8, 13]; _i < _a.length; _i++) { numLower = _a[_i]; _loop_1(numLower); } _loop_2 = function (numLower) { var _loop_5 = function (numUpper) { expect(function () { return tf.linalg.bandPart(a, numLower, numUpper); }) .toThrowError(/bandPart.*numUpper/i); }; for (var _i = 0, _a = [4, 5, 9]; _i < _a.length; _i++) { var numUpper = _a[_i]; _loop_5(numUpper); } }; for (_b = 0, _c = [-1, 0, 1]; _b < _c.length; _b++) { numLower = _c[_b]; _loop_2(numLower); } _loop_3 = function (numLower) { var _loop_6 = function (numUpper) { expect(function () { return tf.linalg.bandPart(a, numLower, numUpper); }) .toThrowError(/bandPart.*(numLower|numUpper)/i); }; for (var _i = 0, _a = [4, 5, 9]; _i < _a.length; _i++) { var numUpper = _a[_i]; _loop_6(numUpper); } }; for (_d = 0, _e = [3, 5, 8, 13]; _d < _e.length; _d++) { numLower = _e[_d]; _loop_3(numLower); } return [2 /*return*/]; }); }); }); it('works for 3x4 example', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a, _b, _c, _i, _d, numUpper, _e, _f, _g, _h, _j, _k, numUpper, _l, _m, _o, numLower, _p, _q, _r, _s, _t, numUpper, _u; return __generator(this, function (_v) { switch (_v.label) { case 0: a = tf.tensor2d([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, la.bandPart(a, 0, 0).array()]; case 1: _a.apply(void 0, [_v.sent(), [[1, 0, 0, 0], [0, 6, 0, 0], [0, 0, 11, 0]]]); _b = test_util_1.expectArraysClose; return [4 /*yield*/, la.bandPart(a, 0, 1).array()]; case 2: _b.apply(void 0, [_v.sent(), [[1, 2, 0, 0], [0, 6, 7, 0], [0, 0, 11, 12]]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, la.bandPart(a, 0, 2).array()]; case 3: _c.apply(void 0, [_v.sent(), [[1, 2, 3, 0], [0, 6, 7, 8], [0, 0, 11, 12]]]); _i = 0, _d = [3, 4, -1, -2]; _v.label = 4; case 4: if (!(_i < _d.length)) return [3 /*break*/, 7]; numUpper = _d[_i]; _e = test_util_1.expectArraysClose; return [4 /*yield*/, la.bandPart(a, 0, numUpper).array()]; case 5: _e.apply(void 0, [_v.sent(), [[1, 2, 3, 4], [0, 6, 7, 8], [0, 0, 11, 12]]]); _v.label = 6; case 6: _i++; return [3 /*break*/, 4]; case 7: _f = test_util_1.expectArraysClose; return [4 /*yield*/, la.bandPart(a, 1, 0).array()]; case 8: _f.apply(void 0, [_v.sent(), [[1, 0, 0, 0], [5, 6, 0, 0], [0, 10, 11, 0]]]); _g = test_util_1.expectArraysClose; return [4 /*yield*/, la.bandPart(a, 1, 1).array()]; case 9: _g.apply(void 0, [_v.sent(), [[1, 2, 0, 0], [5, 6, 7, 0], [0, 10, 11, 12]]]); _h = test_util_1.expectArraysClose; return [4 /*yield*/, la.bandPart(a, 1, 2).array()]; case 10: _h.apply(void 0, [_v.sent(), [[1, 2, 3, 0], [5, 6, 7, 8], [0, 10, 11, 12]]]); _j = 0, _k = [3, 4, -1, -2]; _v.label = 11; case 11: if (!(_j < _k.length)) return [3 /*break*/, 14]; numUpper = _k[_j]; _l = test_util_1.expectArraysClose; return [4 /*yield*/, la.bandPart(a, 1, numUpper).array()]; case 12: _l.apply(void 0, [_v.sent(), [[1, 2, 3, 4], [5, 6, 7, 8], [0, 10, 11, 12]]]); _v.label = 13; case 13: _j++; return [3 /*break*/, 11]; case 14: _m = 0, _o = [2, 3, -1, -2]; _v.label = 15; case 15: if (!(_m < _o.length)) return [3 /*break*/, 23]; numLower = _o[_m]; _p = test_util_1.expectArraysClose; return [4 /*yield*/, la.bandPart(a, numLower, 0).array()]; case 16: _p.apply(void 0, [_v.sent(), [[1, 0, 0, 0], [5, 6, 0, 0], [9, 10, 11, 0]]]); _q = test_util_1.expectArraysClose; return [4 /*yield*/, la.bandPart(a, numLower, 1).array()]; case 17: _q.apply(void 0, [_v.sent(), [[1, 2, 0, 0], [5, 6, 7, 0], [9, 10, 11, 12]]]); _r = test_util_1.expectArraysClose; return [4 /*yield*/, la.bandPart(a, numLower, 2).array()]; case 18: _r.apply(void 0, [_v.sent(), [[1, 2, 3, 0], [5, 6, 7, 8], [9, 10, 11, 12]]]); _s = 0, _t = [3, 4, -1, -2]; _v.label = 19; case 19: if (!(_s < _t.length)) return [3 /*break*/, 22]; numUpper = _t[_s]; _u = test_util_1.expectArraysClose; return [4 /*yield*/, la.bandPart(a, numLower, numUpper).array()]; case 20: _u.apply(void 0, [_v.sent(), [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]]); _v.label = 21; case 21: _s++; return [3 /*break*/, 19]; case 22: _m++; return [3 /*break*/, 15]; case 23: return [2 /*return*/]; } }); }); }); }); // end bandPart jasmine_util_1.describeWithFlags('gramSchmidt-tiny', jasmine_util_1.ALL_ENVS, function () { it('2x2, Array of Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var xs, ys, y, _a, _b, _c, _d; return __generator(this, function (_e) { switch (_e.label) { case 0: xs = [ tf.randomNormal([2], 0, 1, 'float32', 1), tf.randomNormal([2], 0, 1, 'float32', 2) ]; ys = tf.linalg.gramSchmidt(xs); y = tf.stack(ys); // Test that the results are orthogonalized and normalized. _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.transpose().matMul(y).array()]; case 1: _b = [_e.sent()]; return [4 /*yield*/, tf.eye(2).array()]; case 2: // Test that the results are orthogonalized and normalized. _a.apply(void 0, _b.concat([_e.sent()])); // Test angle between xs[0] and ys[0] is zero, i.e., the orientation of the // first vector is kept. _c = test_util_1.expectArraysClose; return [4 /*yield*/, tf.sum(xs[0].mul(ys[0])).array()]; case 3: _d = [_e.sent()]; return [4 /*yield*/, tf.norm(xs[0]).mul(tf.norm(ys[0])).array()]; case 4: // Test angle between xs[0] and ys[0] is zero, i.e., the orientation of the // first vector is kept. _c.apply(void 0, _d.concat([_e.sent()])); return [2 /*return*/]; } }); }); }); it('3x3, Array of Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var xs, ys, y, _a, _b, _c, _d; return __generator(this, function (_e) { switch (_e.label) { case 0: xs = [ tf.randomNormal([3], 0, 1, 'float32', 1), tf.randomNormal([3], 0, 1, 'float32', 2), tf.randomNormal([3], 0, 1, 'float32', 3) ]; ys = tf.linalg.gramSchmidt(xs); y = tf.stack(ys); _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.transpose().matMul(y).array()]; case 1: _b = [_e.sent()]; return [4 /*yield*/, tf.eye(3).array()]; case 2: _a.apply(void 0, _b.concat([_e.sent()])); _c = test_util_1.expectArraysClose; return [4 /*yield*/, tf.sum(xs[0].mul(ys[0])).array()]; case 3: _d = [_e.sent()]; return [4 /*yield*/, tf.norm(xs[0]).mul(tf.norm(ys[0])).array()]; case 4: _c.apply(void 0, _d.concat([_e.sent()])); return [2 /*return*/]; } }); }); }); it('3x3, Matrix', function () { return __awaiter(_this, void 0, void 0, function () { var xs, y, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: xs = tf.randomNormal([3, 3], 0, 1, 'float32', 1); y = tf.linalg.gramSchmidt(xs); _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.transpose().matMul(y).array()]; case 1: _b = [_c.sent()]; return [4 /*yield*/, tf.eye(3).array()]; case 2: _a.apply(void 0, _b.concat([_c.sent()])); return [2 /*return*/]; } }); }); }); it('2x3, Matrix', function () { return __awaiter(_this, void 0, void 0, function () { var xs, y, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: xs = tf.randomNormal([2, 3], 0, 1, 'float32', 1); y = tf.linalg.gramSchmidt(xs); _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.matMul(y.transpose()).array()]; case 1: _b = [_c.sent()]; return [4 /*yield*/, tf.eye(2).array()]; case 2: _a.apply(void 0, _b.concat([_c.sent()])); return [2 /*return*/]; } }); }); }); it('3x2 Matrix throws Error', function () { var xs = tf.tensor2d([[1, 2], [3, -1], [5, 1]]); expect(function () { return tf.linalg.gramSchmidt(xs); }) .toThrowError(/Number of vectors \(3\) exceeds number of dimensions \(2\)/); }); it('Mismatching dimensions input throws Error', function () { var xs = [tf.tensor1d([1, 2, 3]), tf.tensor1d([-1, 5, 1]), tf.tensor1d([0, 0])]; expect(function () { return tf.linalg.gramSchmidt(xs); }).toThrowError(/Non-unique/); }); it('Empty input throws Error', function () { expect(function () { return tf.linalg.gramSchmidt([]); }).toThrowError(/empty/); }); }); jasmine_util_1.describeWithFlags('qr', jasmine_util_1.ALL_ENVS, function () { it('1x1', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a, q, r, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: x = ops_1.tensor2d([[10]], [1, 1]); _a = tf.linalg.qr(x), q = _a[0], r = _a[1]; _b = test_util_1.expectArraysClose; return [4 /*yield*/, q.array()]; case 1: _b.apply(void 0, [_d.sent(), [[-1]]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, r.array()]; case 2: _c.apply(void 0, [_d.sent(), [[-10]]]); return [2 /*return*/]; } }); }); }); it('2x2', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a, q, r, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: x = ops_1.tensor2d([[1, 3], [-2, -4]], [2, 2]); _a = tf.linalg.qr(x), q = _a[0], r = _a[1]; _b = test_util_1.expectArraysClose; return [4 /*yield*/, q.array()]; case 1: _b.apply(void 0, [_d.sent(), [[-0.4472, -0.8944], [0.8944, -0.4472]]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, r.array()]; case 2: _c.apply(void 0, [_d.sent(), [[-2.2361, -4.9193], [0, -0.8944]]]); return [2 /*return*/]; } }); }); }); it('2x2x2', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a, q, r, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: x = ops_1.tensor3d([[[-1, -3], [2, 4]], [[1, 3], [-2, -4]]], [2, 2, 2]); _a = tf.linalg.qr(x), q = _a[0], r = _a[1]; _b = test_util_1.expectArraysClose; return [4 /*yield*/, q.array()]; case 1: _b.apply(void 0, [_d.sent(), [ [[-0.4472, -0.8944], [0.8944, -0.4472]], [[-0.4472, -0.8944], [0.8944, -0.4472]] ]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, r.array()]; case 2: _c.apply(void 0, [_d.sent(), [[[2.2361, 4.9193], [0, 0.8944]], [[-2.2361, -4.9193], [0, -0.8944]]]]); return [2 /*return*/]; } }); }); }); it('2x1x2x2', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a, q, r, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: x = ops_1.tensor4d([[[[-1, -3], [2, 4]]], [[[1, 3], [-2, -4]]]], [2, 1, 2, 2]); _a = tf.linalg.qr(x), q = _a[0], r = _a[1]; _b = test_util_1.expectArraysClose; return [4 /*yield*/, q.array()]; case 1: _b.apply(void 0, [_d.sent(), [ [[[-0.4472, -0.8944], [0.8944, -0.4472]]], [[[-0.4472, -0.8944], [0.8944, -0.4472]]], ]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, r.array()]; case 2: _c.apply(void 0, [_d.sent(), [ [[[2.2361, 4.9193], [0, 0.8944]]], [[[-2.2361, -4.9193], [0, -0.8944]]] ]]); return [2 /*return*/]; } }); }); }); it('3x3', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a, q, r, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: x = ops_1.tensor2d([[1, 3, 2], [-2, 0, 7], [8, -9, 4]], [3, 3]); _a = tf.linalg.qr(x), q = _a[0], r = _a[1]; _b = test_util_1.expectArraysClose; return [4 /*yield*/, q.array()]; case 1: _b.apply(void 0, [_d.sent(), [ [-0.1204, 0.8729, 0.4729], [0.2408, -0.4364, 0.8669], [-0.9631, -0.2182, 0.1576] ]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, r.array()]; case 2: _c.apply(void 0, [_d.sent(), [[-8.3066, 8.3066, -2.4077], [0, 4.5826, -2.1822], [0, 0, 7.6447]]]); return [2 /*return*/]; } }); }); }); it('3x3, zero on diagonal', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a, q, r, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: x = ops_1.tensor2d([[0, 2, 2], [1, 1, 1], [0, 1, 2]], [3, 3]); _a = tf.linalg.qr(x), q = _a[0], r = _a[1]; _b = test_util_1.expectArraysClose; return [4 /*yield*/, q.data()]; case 1: _b.apply(void 0, [_d.sent(), [ [0., -0.89442719, 0.4472136], [1., 0., 0.], [0., -0.4472136, -0.89442719] ]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 2: _c.apply(void 0, [_d.sent(), [[1., 1., 1.], [0., -2.23606798, -2.68328157], [0., 0., -0.89442719]]]); return [2 /*return*/]; } }); }); }); it('3x2, fullMatrices = default false', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a, q, r, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: x = ops_1.tensor2d([[1, 2], [3, -3], [-2, 1]], [3, 2]); _a = tf.linalg.qr(x), q = _a[0], r = _a[1]; _b = test_util_1.expectArraysClose; return [4 /*yield*/, q.array()]; case 1: _b.apply(void 0, [_d.sent(), [[-0.2673, 0.9221], [-0.8018, -0.3738], [0.5345, -0.0997]]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, r.array()]; case 2: _c.apply(void 0, [_d.sent(), [[-3.7417, 2.4054], [0, 2.8661]]]); return [2 /*return*/]; } }); }); }); it('3x2, fullMatrices = true', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a, q, r, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: x = ops_1.tensor2d([[1, 2], [3, -3], [-2, 1]], [3, 2]); _a = tf.linalg.qr(x, true), q = _a[0], r = _a[1]; _b = test_util_1.expectArraysClose; return [4 /*yield*/, q.array()]; case 1: _b.apply(void 0, [_d.sent(), [ [-0.2673, 0.9221, 0.2798], [-0.8018, -0.3738, 0.4663], [0.5345, -0.0997, 0.8393] ]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, r.array()]; case 2: _c.apply(void 0, [_d.sent(), [[-3.7417, 2.4054], [0, 2.8661], [0, 0]]]); return [2 /*return*/]; } }); }); }); it('2x3, fullMatrices = default false', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a, q, r, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: x = ops_1.tensor2d([[1, 2, 3], [-3, -2, 1]], [2, 3]); _a = tf.linalg.qr(x), q = _a[0], r = _a[1]; _b = test_util_1.expectArraysClose; return [4 /*yield*/, q.array()]; case 1: _b.apply(void 0, [_d.sent(), [[-0.3162278, -0.9486833], [0.9486833, -0.31622773]]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, r.array()]; case 2: _c.apply(void 0, [_d.sent(), [[-3.162, -2.5298, -2.3842e-07], [0, -1.2649, -3.162]]]); return [2 /*return*/]; } }); }); }); it('2x3, fullMatrices = true', function () { return __awaiter(_this, void 0, void 0, function () { var x, _a, q, r, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: x = ops_1.tensor2d([[1, 2, 3], [-3, -2, 1]], [2, 3]); _a = tf.linalg.qr(x, true), q = _a[0], r = _a[1]; _b = test_util_1.expectArraysClose; return [4 /*yield*/, q.array()]; case 1: _b.apply(void 0, [_d.sent(), [[-0.3162278, -0.9486833], [0.9486833, -0.31622773]]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, r.array()]; case 2: _c.apply(void 0, [_d.sent(), [[-3.162, -2.5298, -2.3842e-07], [0, -1.2649, -3.162]]]); return [2 /*return*/]; } }); }); }); it('Does not leak memory', function () { var x = ops_1.tensor2d([[1, 3], [-2, -4]], [2, 2]); // The first call to qr creates and keeps internal singleton tensors. // Subsequent calls should always create exactly two tensors. tf.linalg.qr(x); // Count before real call. var numTensors = tf.memory().numTensors; tf.linalg.qr(x); expect(tf.memory().numTensors).toEqual(numTensors + 2); }); it('Insuffient input tensor rank leads to error', function () { var x1 = ops_1.scalar(12); expect(function () { return tf.linalg.qr(x1); }).toThrowError(/rank >= 2.*got rank 0/); var x2 = ops_1.tensor1d([12]); expect(function () { return tf.linalg.qr(x2); }).toThrowError(/rank >= 2.*got rank 1/); }); }); //# sourceMappingURL=linalg_ops_test.js.map