"use strict"; /** * @license * Copyright 2017 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('movingAverage', jasmine_util_1.ALL_ENVS, function () { // Use the following tensorflow to generate reference values for // `zeroDebias` = `true`; // // ```python // import tensorflow as tf // from tensorflow.python.training.moving_averages import // assign_moving_average // // with tf.Session() as sess: // v = tf.get_variable("v1", shape=[2, 2], dtype=tf.float32, // initializer=tf.zeros_initializer) // x = tf.Variable([[1.0, 2.0], [3.0, 4.0]]) // inc_x = x.assign_add([[10.0, 10.0], [10.0, 10.0]]) // update = assign_moving_average(v, x, 0.6) // // sess.run(tf.global_variables_initializer()) // // sess.run(update) // print(sess.run(v)) // // sess.run(inc_x) // sess.run(update) // print(sess.run(v)) // ``` it('zeroDebias=true, decay and step are numbers', function () { return __awaiter(_this, void 0, void 0, function () { var v0, x, decay, v1, _a, y, v2, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: v0 = tf.tensor2d([[0, 0], [0, 0]], [2, 2]); x = tf.tensor2d([[1, 2], [3, 4]], [2, 2]); decay = 0.6; v1 = tf.movingAverage(v0, x, decay, 1); _a = test_util_1.expectArraysClose; return [4 /*yield*/, v1.array()]; case 1: _a.apply(void 0, [_c.sent(), [[1, 2], [3, 4]]]); y = tf.tensor2d([[11, 12], [13, 14]], [2, 2]); v2 = tf.movingAverage(v1, y, decay, 2); _b = test_util_1.expectArraysClose; return [4 /*yield*/, v2.array()]; case 2: _b.apply(void 0, [_c.sent(), [[7.25, 8.25], [9.25, 10.25]]]); return [2 /*return*/]; } }); }); }); it('zeroDebias=true, decay and step are scalars', function () { return __awaiter(_this, void 0, void 0, function () { var v0, x, decay, v1, _a, y, v2, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: v0 = tf.tensor2d([[0, 0], [0, 0]], [2, 2]); x = tf.tensor2d([[1, 2], [3, 4]], [2, 2]); decay = tf.scalar(0.6); v1 = tf.movingAverage(v0, x, decay, tf.scalar(1)); _a = test_util_1.expectArraysClose; return [4 /*yield*/, v1.array()]; case 1: _a.apply(void 0, [_c.sent(), [[1, 2], [3, 4]]]); y = tf.tensor2d([[11, 12], [13, 14]], [2, 2]); v2 = tf.movingAverage(v1, y, decay, tf.scalar(2)); _b = test_util_1.expectArraysClose; return [4 /*yield*/, v2.array()]; case 2: _b.apply(void 0, [_c.sent(), [[7.25, 8.25], [9.25, 10.25]]]); return [2 /*return*/]; } }); }); }); // Use the following tensorflow to generate reference values for // `zeroDebias` = `false`; // // ```python // import tensorflow as tf // from tensorflow.python.training.moving_averages import // assign_moving_average // // with tf.Session() as sess: // v = tf.get_variable("v1", shape=[2, 2], dtype=tf.float32, // initializer=tf.zeros_initializer) // x = tf.Variable([[1.0, 2.0], [3.0, 4.0]]) // inc_x = x.assign_add([[10.0, 10.0], [10.0, 10.0]]) // update = assign_moving_average(v, x, 0.6, zero_debias=False) // // sess.run(tf.global_variables_initializer()) // // sess.run(update) // print(sess.run(v)) // // sess.run(inc_x) // sess.run(update) // print(sess.run(v)) // ``` it('zeroDebias=false, decay and step are numbers', function () { return __awaiter(_this, void 0, void 0, function () { var v0, x, decay, v1, _a, y, v2, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: v0 = tf.tensor2d([[0, 0], [0, 0]], [2, 2]); x = tf.tensor2d([[1, 2], [3, 4]], [2, 2]); decay = 0.6; v1 = tf.movingAverage(v0, x, decay, null, false); _a = test_util_1.expectArraysClose; return [4 /*yield*/, v1.array()]; case 1: _a.apply(void 0, [_c.sent(), [[0.4, 0.8], [1.2, 1.6]]]); y = tf.tensor2d([[11, 12], [13, 14]], [2, 2]); v2 = tf.movingAverage(v1, y, decay, null, false); _b = test_util_1.expectArraysClose; return [4 /*yield*/, v2.array()]; case 2: _b.apply(void 0, [_c.sent(), [[4.64, 5.28], [5.92, 6.56]]]); return [2 /*return*/]; } }); }); }); it('zeroDebias=false, decay is scalar', function () { return __awaiter(_this, void 0, void 0, function () { var v0, x, decay, v1, _a, y, v2, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: v0 = tf.tensor2d([[0, 0], [0, 0]], [2, 2]); x = tf.tensor2d([[1, 2], [3, 4]], [2, 2]); decay = tf.scalar(0.6); v1 = tf.movingAverage(v0, x, decay, null, false); _a = test_util_1.expectArraysClose; return [4 /*yield*/, v1.array()]; case 1: _a.apply(void 0, [_c.sent(), [[0.4, 0.8], [1.2, 1.6]]]); y = tf.tensor2d([[11, 12], [13, 14]], [2, 2]); v2 = tf.movingAverage(v1, y, decay, null, false); _b = test_util_1.expectArraysClose; return [4 /*yield*/, v2.array()]; case 2: _b.apply(void 0, [_c.sent(), [[4.64, 5.28], [5.92, 6.56]]]); return [2 /*return*/]; } }); }); }); it('zeroDebias=true, no step throws error', function () { var v0 = tf.tensor2d([[0, 0], [0, 0]], [2, 2]); var x = tf.tensor2d([[1, 2], [3, 4]], [2, 2]); var decay = tf.scalar(0.6); expect(function () { return tf.movingAverage(v0, x, decay, null); }).toThrowError(); }); it('shape mismatch in v and x throws error', function () { var v0 = tf.tensor2d([[0, 0], [0, 0]], [2, 2]); var x = tf.tensor2d([[1, 2]], [1, 2]); var decay = tf.scalar(0.6); expect(function () { return tf.movingAverage(v0, x, decay, null); }).toThrowError(); }); it('throws when passed v as a non-tensor', function () { var x = tf.tensor2d([[1, 2], [3, 4]], [2, 2]); expect(function () { return tf.movingAverage({}, x, 1); }) .toThrowError(/Argument 'v' passed to 'movingAverage' must be a Tensor/); }); it('throws when passed v as a non-tensor', function () { var v = tf.tensor2d([[0, 0], [0, 0]], [2, 2]); expect(function () { return tf.movingAverage(v, {}, 1); }) .toThrowError(/Argument 'x' passed to 'movingAverage' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var v0, x, decay, v1, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: v0 = [[0, 0], [0, 0]]; x = [[1, 2], [3, 4]]; decay = 0.6; v1 = tf.movingAverage(v0, x, decay, 1); _a = test_util_1.expectArraysClose; return [4 /*yield*/, v1.array()]; case 1: _a.apply(void 0, [_b.sent(), [[1, 2], [3, 4]]]); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=moving_average_test.js.map