"use strict"; /** * @license * Copyright 2017 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('multinomial', jasmine_util_1.ALL_ENVS, function () { var NUM_SAMPLES = 1000; // Allowed Variance in probability (in %). var EPSILON = 0.05; var SEED = 3.14; it('Flip a fair coin and check bounds', function () { return __awaiter(_this, void 0, void 0, function () { var probs, result, outcomeProbs, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: probs = tf.tensor1d([1, 1]); result = tf.multinomial(probs, NUM_SAMPLES, SEED); expect(result.dtype).toBe('int32'); expect(result.shape).toEqual([NUM_SAMPLES]); _a = computeProbs; return [4 /*yield*/, result.data()]; case 1: outcomeProbs = _a.apply(void 0, [_b.sent(), 2]); test_util_1.expectArraysClose(outcomeProbs, [0.5, 0.5], EPSILON); return [2 /*return*/]; } }); }); }); it('Flip a two-sided coin with 100% of heads', function () { return __awaiter(_this, void 0, void 0, function () { var logits, result, outcomeProbs, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: logits = tf.tensor1d([1, -100]); result = tf.multinomial(logits, NUM_SAMPLES, SEED); expect(result.dtype).toBe('int32'); expect(result.shape).toEqual([NUM_SAMPLES]); _a = computeProbs; return [4 /*yield*/, result.data()]; case 1: outcomeProbs = _a.apply(void 0, [_b.sent(), 2]); test_util_1.expectArraysClose(outcomeProbs, [1, 0], EPSILON); return [2 /*return*/]; } }); }); }); it('Flip a two-sided coin with 100% of tails', function () { return __awaiter(_this, void 0, void 0, function () { var logits, result, outcomeProbs, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: logits = tf.tensor1d([-100, 1]); result = tf.multinomial(logits, NUM_SAMPLES, SEED); expect(result.dtype).toBe('int32'); expect(result.shape).toEqual([NUM_SAMPLES]); _a = computeProbs; return [4 /*yield*/, result.data()]; case 1: outcomeProbs = _a.apply(void 0, [_b.sent(), 2]); test_util_1.expectArraysClose(outcomeProbs, [0, 1], EPSILON); return [2 /*return*/]; } }); }); }); it('Flip a single-sided coin throws error', function () { var probs = tf.tensor1d([1]); expect(function () { return tf.multinomial(probs, NUM_SAMPLES, SEED); }).toThrowError(); }); it('Flip a ten-sided coin and check bounds', function () { return __awaiter(_this, void 0, void 0, function () { var numOutcomes, logits, result, outcomeProbs, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: numOutcomes = 10; logits = tf.fill([numOutcomes], 1).as1D(); result = tf.multinomial(logits, NUM_SAMPLES, SEED); expect(result.dtype).toBe('int32'); expect(result.shape).toEqual([NUM_SAMPLES]); _a = computeProbs; return [4 /*yield*/, result.data()]; case 1: outcomeProbs = _a.apply(void 0, [_b.sent(), numOutcomes]); expect(outcomeProbs.length).toBeLessThanOrEqual(numOutcomes); return [2 /*return*/]; } }); }); }); it('Flip 3 three-sided coins, each coin is 100% biases', function () { return __awaiter(_this, void 0, void 0, function () { var numOutcomes, logits, result, outcomeProbs, _a, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: numOutcomes = 3; logits = tf.tensor2d([[-100, -100, 1], [-100, 1, -100], [1, -100, -100]], [3, numOutcomes]); result = tf.multinomial(logits, NUM_SAMPLES, SEED); expect(result.dtype).toBe('int32'); expect(result.shape).toEqual([3, NUM_SAMPLES]); _a = computeProbs; return [4 /*yield*/, result.data()]; case 1: outcomeProbs = _a.apply(void 0, [(_d.sent()).slice(0, NUM_SAMPLES), numOutcomes]); test_util_1.expectArraysClose(outcomeProbs, [0, 0, 1], EPSILON); _b = computeProbs; return [4 /*yield*/, result.data()]; case 2: // Second coin always gets middle event. outcomeProbs = _b.apply(void 0, [(_d.sent()).slice(NUM_SAMPLES, 2 * NUM_SAMPLES), numOutcomes]); test_util_1.expectArraysClose(outcomeProbs, [0, 1, 0], EPSILON); _c = computeProbs; return [4 /*yield*/, result.data()]; case 3: // Third coin always gets first event outcomeProbs = _c.apply(void 0, [(_d.sent()).slice(2 * NUM_SAMPLES), numOutcomes]); test_util_1.expectArraysClose(outcomeProbs, [1, 0, 0], EPSILON); return [2 /*return*/]; } }); }); }); it('passing Tensor3D throws error', function () { var probs = tf.zeros([3, 2, 2]); var normalized = true; expect(function () { return tf.multinomial(probs, 3, SEED, normalized); }) .toThrowError(); }); it('throws when passed a non-tensor', function () { // tslint:disable-next-line:no-any expect(function () { return tf.multinomial({}, NUM_SAMPLES, SEED); }) .toThrowError(/Argument 'logits' passed to 'multinomial' must be a Tensor/); }); it('accepts a tensor-like object for logits (biased coin)', function () { return __awaiter(_this, void 0, void 0, function () { var res, outcomeProbs, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: res = tf.multinomial([-100, 1], NUM_SAMPLES, SEED); expect(res.dtype).toBe('int32'); expect(res.shape).toEqual([NUM_SAMPLES]); _a = computeProbs; return [4 /*yield*/, res.data()]; case 1: outcomeProbs = _a.apply(void 0, [_b.sent(), 2]); test_util_1.expectArraysClose(outcomeProbs, [0, 1], EPSILON); return [2 /*return*/]; } }); }); }); function computeProbs(events, numOutcomes) { var counts = []; for (var i = 0; i < numOutcomes; ++i) { counts[i] = 0; } var numSamples = events.length; for (var i = 0; i < events.length; ++i) { counts[events[i]]++; } // Normalize counts to be probabilities between [0, 1]. for (var i = 0; i < counts.length; i++) { counts[i] /= numSamples; } return counts; } }); //# sourceMappingURL=multinomial_test.js.map