"use strict"; /** * @license * Copyright 2017 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('pad 1d', jasmine_util_1.ALL_ENVS, function () { it('Should pad 1D arrays', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, 2, 3, 4, 5, 6], 'int32'); b = tf.pad1d(a, [2, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 0, 1, 2, 3, 4, 5, 6, 0, 0, 0]]); return [2 /*return*/]; } }); }); }); it('Should not pad 1D arrays with 0s', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, 2, 3, 4], 'int32'); b = tf.pad1d(a, [0, 0]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2, 3, 4]]); return [2 /*return*/]; } }); }); }); it('Should handle padding with custom value', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor1d([1, 2, 3, 4], 'int32'); b = tf.pad1d(a, [2, 3], 9); _a = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 1: _a.apply(void 0, [_d.sent(), [9, 9, 1, 2, 3, 4, 9, 9, 9]]); a = tf.tensor1d([1, 2, 3, 4]); b = tf.pad1d(a, [2, 1], 1.1); _b = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 2: _b.apply(void 0, [_d.sent(), [1.1, 1.1, 1, 2, 3, 4, 1.1]]); a = tf.tensor1d([1, 2, 3, 4]); b = tf.pad1d(a, [2, 1], 1); _c = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 3: _c.apply(void 0, [_d.sent(), [1, 1, 1, 2, 3, 4, 1]]); return [2 /*return*/]; } }); }); }); it('Should handle NaNs with 1D arrays', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, NaN, 2, NaN]); b = tf.pad1d(a, [1, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 1, NaN, 2, NaN, 0]]); return [2 /*return*/]; } }); }); }); it('Should handle invalid paddings', function () { var a = tf.tensor1d([1, 2, 3, 4], 'int32'); var f = function () { // tslint:disable-next-line:no-any tf.pad1d(a, [2, 2, 2]); }; expect(f).toThrowError(); }); it('grad', function () { return __awaiter(_this, void 0, void 0, function () { var a, dy, da, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, 2, 3]); dy = tf.tensor1d([10, 20, 30, 40, 50, 60]); da = tf.grad(function (a) { return tf.pad1d(a, [2, 1]); })(a, dy); expect(da.shape).toEqual([3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _a.apply(void 0, [_b.sent(), [30, 40, 50]]); return [2 /*return*/]; } }); }); }); it('gradient with clones', function () { return __awaiter(_this, void 0, void 0, function () { var a, dy, da, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, 2, 3]); dy = tf.tensor1d([10, 20, 30, 40, 50, 60]); da = tf.grad(function (a) { return tf.pad1d(a.clone(), [2, 1]).clone(); })(a, dy); expect(da.shape).toEqual([3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _a.apply(void 0, [_b.sent(), [30, 40, 50]]); return [2 /*return*/]; } }); }); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = [1, 2, 3, 4, 5, 6]; b = tf.pad1d(a, [2, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 0, 1, 2, 3, 4, 5, 6, 0, 0, 0]]); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('pad 2d', jasmine_util_1.ALL_ENVS, function () { it('Should pad 2D arrays', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: a = tf.tensor2d([[1], [2]], [2, 1], 'int32'); b = tf.pad2d(a, [[1, 1], [1, 1]]); // 0, 0, 0 // 0, 1, 0 // 0, 2, 0 // 0, 0, 0 _a = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 1: // 0, 0, 0 // 0, 1, 0 // 0, 2, 0 // 0, 0, 0 _a.apply(void 0, [_c.sent(), [0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0]]); a = tf.tensor2d([[1, 2, 3], [4, 5, 6]], [2, 3], 'int32'); b = tf.pad2d(a, [[2, 2], [1, 1]]); // 0, 0, 0, 0, 0 // 0, 0, 0, 0, 0 // 0, 1, 2, 3, 0 // 0, 4, 5, 6, 0 // 0, 0, 0, 0, 0 // 0, 0, 0, 0, 0 _b = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 2: // 0, 0, 0, 0, 0 // 0, 0, 0, 0, 0 // 0, 1, 2, 3, 0 // 0, 4, 5, 6, 0 // 0, 0, 0, 0, 0 // 0, 0, 0, 0, 0 _b.apply(void 0, [_c.sent(), [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 4, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]]); return [2 /*return*/]; } }); }); }); it('Should not pad 2D arrays with 0s', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([[1, 2, 3], [4, 5, 6]], [2, 3], 'int32'); b = tf.pad2d(a, [[0, 0], [0, 0]]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2, 3, 4, 5, 6]]); return [2 /*return*/]; } }); }); }); it('Should handle padding with custom value', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor2d([[1, 2, 3], [4, 5, 6]], [2, 3], 'int32'); b = tf.pad2d(a, [[1, 1], [1, 1]], 10); _a = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 1: _a.apply(void 0, [_d.sent(), [ 10, 10, 10, 10, 10, 10, 1, 2, 3, 10, 10, 4, 5, 6, 10, 10, 10, 10, 10, 10 ]]); a = tf.tensor2d([[1], [1]], [2, 1]); b = tf.pad2d(a, [[1, 1], [1, 1]], -2.1); _b = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 2: _b.apply(void 0, [_d.sent(), [-2.1, -2.1, -2.1, -2.1, 1, -2.1, -2.1, 1, -2.1, -2.1, -2.1, -2.1]]); a = tf.tensor2d([[1], [1]], [2, 1]); b = tf.pad2d(a, [[1, 1], [1, 1]], -2); _c = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 3: _c.apply(void 0, [_d.sent(), [-2, -2, -2, -2, 1, -2, -2, 1, -2, -2, -2, -2]]); return [2 /*return*/]; } }); }); }); it('Should handle NaNs with 2D arrays', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([[1, NaN], [1, NaN]], [2, 2]); b = tf.pad2d(a, [[1, 1], [1, 1]]); // 0, 0, 0, 0 // 0, 1, NaN, 0 // 0, 1, NaN, 0 // 0, 0, 0, 0 _a = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 1: // 0, 0, 0, 0 // 0, 1, NaN, 0 // 0, 1, NaN, 0 // 0, 0, 0, 0 _a.apply(void 0, [_b.sent(), [0, 0, 0, 0, 0, 1, NaN, 0, 0, 1, NaN, 0, 0, 0, 0, 0]]); return [2 /*return*/]; } }); }); }); it('Should handle invalid paddings', function () { var a = tf.tensor2d([[1], [2]], [2, 1], 'int32'); var f = function () { // tslint:disable-next-line:no-any tf.pad2d(a, [[2, 2, 2], [1, 1, 1]]); }; expect(f).toThrowError(); }); it('grad', function () { return __awaiter(_this, void 0, void 0, function () { var a, dy, da, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([[1, 2], [3, 4]]); dy = tf.tensor2d([[0, 0, 0], [10, 20, 0], [30, 40, 0]], [3, 3]); da = tf.grad(function (a) { return tf.pad2d(a, [[1, 0], [0, 1]]); })(a, dy); expect(da.shape).toEqual([2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _a.apply(void 0, [_b.sent(), [10, 20, 30, 40]]); return [2 /*return*/]; } }); }); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = [[1, 2, 3], [4, 5, 6]]; b = tf.pad2d(a, [[0, 0], [0, 0]]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2, 3, 4, 5, 6]]); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('pad 3d', jasmine_util_1.ALL_ENVS, function () { it('works with 3d tensor, float32', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor3d([[[1]], [[2]]], [2, 1, 1], 'float32'); b = tf.pad3d(a, [[1, 1], [1, 1], [1, 1]]); // 0, 0, 0 // 0, 0, 0 // 0, 0, 0 // 0, 0, 0 // 0, 1, 0 // 0, 0, 0 // 0, 0, 0 // 0, 2, 0 // 0, 0, 0 // 0, 0, 0 // 0, 0, 0 // 0, 0, 0 expect(b.shape).toEqual([4, 3, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]]); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('pad 4d', jasmine_util_1.ALL_ENVS, function () { it('Should pad 4D arrays', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, expected, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: a = tf.tensor4d([[[[9]]]], [1, 1, 1, 1], 'int32'); b = tf.pad4d(a, [[0, 0], [1, 1], [1, 1], [0, 0]]); expected = tf.tensor4d([[[[0], [0], [0]], [[0], [9], [0]], [[0], [0], [0]]]], [1, 3, 3, 1], 'int32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 1: _b = [_c.sent()]; return [4 /*yield*/, expected.data()]; case 2: _a.apply(void 0, _b.concat([_c.sent()])); expect(b.dtype).toBe('int32'); expect(b.shape).toEqual([1, 3, 3, 1]); return [2 /*return*/]; } }); }); }); it('does not leak memory', function () { var a = tf.tensor4d([[[[9]]]], [1, 1, 1, 1], 'int32'); // The first call to pad may create and keeps internal singleton tensors. // Subsequent calls should always create exactly one new tensor. tf.pad4d(a, [[0, 0], [1, 1], [1, 1], [0, 0]]); // Count before real call. var numTensors = tf.memory().numTensors; tf.pad4d(a, [[0, 0], [1, 1], [1, 1], [0, 0]]); expect(tf.memory().numTensors).toEqual(numTensors + 1); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, expected, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: a = [[[[9]]]]; b = tf.pad4d(a, [[0, 0], [1, 1], [1, 1], [0, 0]]); expected = tf.tensor4d([[[[0], [0], [0]], [[0], [9], [0]], [[0], [0], [0]]]], [1, 3, 3, 1], 'float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 1: _b = [_c.sent()]; return [4 /*yield*/, expected.data()]; case 2: _a.apply(void 0, _b.concat([_c.sent()])); expect(b.dtype).toBe('float32'); expect(b.shape).toEqual([1, 3, 3, 1]); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('pad', jasmine_util_1.ALL_ENVS, function () { it('Pad tensor2d', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: a = tf.tensor2d([[1], [2]], [2, 1], 'int32'); b = tf.pad(a, [[1, 1], [1, 1]]); // 0, 0, 0 // 0, 1, 0 // 0, 2, 0 // 0, 0, 0 _a = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 1: // 0, 0, 0 // 0, 1, 0 // 0, 2, 0 // 0, 0, 0 _a.apply(void 0, [_c.sent(), [0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0]]); a = tf.tensor2d([[1, 2, 3], [4, 5, 6]], [2, 3], 'int32'); b = tf.pad(a, [[2, 2], [1, 1]]); // 0, 0, 0, 0, 0 // 0, 0, 0, 0, 0 // 0, 1, 2, 3, 0 // 0, 4, 5, 6, 0 // 0, 0, 0, 0, 0 // 0, 0, 0, 0, 0 _b = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 2: // 0, 0, 0, 0, 0 // 0, 0, 0, 0, 0 // 0, 1, 2, 3, 0 // 0, 4, 5, 6, 0 // 0, 0, 0, 0, 0 // 0, 0, 0, 0, 0 _b.apply(void 0, [_c.sent(), [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 4, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]]); return [2 /*return*/]; } }); }); }); it('throws when passed a non-tensor', function () { expect(function () { return tf.pad({}, [[0, 0]]); }) .toThrowError(/Argument 'x' passed to 'pad' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var x, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = [[1], [2]]; res = tf.pad(x, [[1, 1], [1, 1]]); // 0, 0, 0 // 0, 1, 0 // 0, 2, 0 // 0, 0, 0 _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: // 0, 0, 0 // 0, 1, 0 // 0, 2, 0 // 0, 0, 0 _a.apply(void 0, [_b.sent(), [0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0]]); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=pad_test.js.map