"use strict"; /** * @license * Copyright 2017 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); var reduce_util = require("./reduce_util"); jasmine_util_1.describeWithFlags('min', jasmine_util_1.ALL_ENVS, function () { it('Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([3, -1, 0, 100, -7, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.min(a).data()]; case 1: _a.apply(void 0, [_b.sent(), -7]); return [2 /*return*/]; } }); }); }); it('ignores NaNs', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([3, NaN, 2]); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, tf.min(a).data()]; case 1: _a.apply(void 0, [_b.sent(), 2]); return [2 /*return*/]; } }); }); }); it('2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, -1, 0, 100, -7, 2], [2, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.min(a).data()]; case 1: _a.apply(void 0, [_b.sent(), -7]); return [2 /*return*/]; } }); }); }); it('2D axis=[0,1]', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, -1, 0, 100, -7, 2], [2, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.min(a, [0, 1]).data()]; case 1: _a.apply(void 0, [_b.sent(), -7]); return [2 /*return*/]; } }); }); }); it('2D, axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, -1, 0, 100, -7, 2], [2, 3]); r = tf.min(a, 0); expect(r.shape).toEqual([3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, -7, 0]]); return [2 /*return*/]; } }); }); }); it('2D, axis=0, keepDims', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, -1, 0, 100, -7, 2], [2, 3]); r = tf.min(a, 0, true /* keepDims */); expect(r.shape).toEqual([1, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, -7, 0]]); return [2 /*return*/]; } }); }); }); it('2D, axis=1 provided as a number', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, 2, 5, 100, -7, 2], [2, 3]); r = tf.min(a, 1); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, -7]]); return [2 /*return*/]; } }); }); }); it('2D, axis = -1 provided as a number', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, 2, 5, 100, -7, 2], [2, 3]); r = tf.min(a, -1); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, -7]]); return [2 /*return*/]; } }); }); }); it('2D, axis=[1]', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, 2, 5, 100, -7, 2], [2, 3]); r = tf.min(a, [1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, -7]]); return [2 /*return*/]; } }); }); }); it('throws when passed a non-tensor', function () { expect(function () { return tf.min({}); }) .toThrowError(/Argument 'x' passed to 'min' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var _a; return __generator(this, function (_b) { switch (_b.label) { case 0: _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.min([3, -1, 0, 100, -7, 2]).data()]; case 1: _a.apply(void 0, [_b.sent(), -7]); return [2 /*return*/]; } }); }); }); it('min gradient: Scalar', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.scalar(42); dy = tf.scalar(-1); gradients = tf.grad(function (v) { return tf.min(v); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), -1]); return [2 /*return*/]; } }); }); }); it('gradient with clones', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.scalar(42); dy = tf.scalar(-1); gradients = tf.grad(function (v) { return tf.min(v.clone()).clone(); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), -1]); return [2 /*return*/]; } }); }); }); it('min gradient: 1D, ties', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor1d([-1, -3, -7, -7]); dy = tf.scalar(-1); gradients = tf.grad(function (v) { return tf.min(v); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 0, -1, -1]]); return [2 /*return*/]; } }); }); }); it('min gradient: 2D, axes=-1, keepDims=false', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor2d([[-0, -20, -10], [10, 30, 20]]); dy = tf.tensor1d([-1, -1]); axis = -1; gradients = tf.grad(function (v) { return tf.min(v, axis); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, 0, -1, 0, 0]]); expect(gradients.shape).toEqual([2, 3]); return [2 /*return*/]; } }); }); }); it('min gradient: ties, 2D, axes=-1, keepDims=false', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor2d([[0, -20, -20], [10, 30, 10]]); dy = tf.tensor1d([-1, -1]); axis = -1; gradients = tf.grad(function (v) { return tf.min(v, axis); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, -1, -1, 0, -1]]); expect(gradients.shape).toEqual([2, 3]); return [2 /*return*/]; } }); }); }); it('min gradient: 2D, axes=0, keepDims=false', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor2d([[0, 20, 10], [-10, -30, 20]]); dy = tf.tensor1d([-1, -1, -1]); axis = 0; gradients = tf.grad(function (v) { return tf.max(v, axis); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [-1, -1, 0, 0, 0, -1]]); expect(gradients.shape).toEqual([2, 3]); return [2 /*return*/]; } }); }); }); it('min gradient: 2D, axes=-1, keepDims=true', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, keepDims, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor2d([[0, -20, -10], [10, 30, 20]]); dy = tf.tensor2d([[-1], [-1]]); axis = -1; keepDims = true; gradients = tf.grad(function (v) { return tf.min(v, axis, keepDims); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, 0, -1, 0, 0]]); expect(gradients.shape).toEqual([2, 3]); return [2 /*return*/]; } }); }); }); it('min gradient: 2D, axes=0, keepDims=true', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, keepDims, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor2d([[0, -20, -10], [10, 30, -20]]); dy = tf.tensor2d([[-1, -1, -1]]); axis = 0; keepDims = true; gradients = tf.grad(function (v) { return tf.min(v, axis, keepDims); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [-1, -1, 0, 0, 0, -1]]); expect(gradients.shape).toEqual([2, 3]); return [2 /*return*/]; } }); }); }); it('min gradient: 3D, axes=[1, 2], keepDims=false', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor3d([[[0, -20], [-10, -15]], [[10, 30], [20, 15]]]); dy = tf.tensor1d([-1, -1]); axis = [1, 2]; gradients = tf.grad(function (v) { return tf.min(v, axis); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, 0, 0, -1, 0, 0, 0]]); expect(gradients.shape).toEqual([2, 2, 2]); return [2 /*return*/]; } }); }); }); it('min gradient: ties, 3D, axes=[1, 2], keepDims=false', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor3d([[[0, -20], [-20, -20]], [[10, 30], [10, 15]]]); dy = tf.tensor1d([-1, -1]); axis = [1, 2]; gradients = tf.grad(function (v) { return tf.min(v, axis); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, -1, -1, -1, 0, -1, 0]]); expect(gradients.shape).toEqual([2, 2, 2]); return [2 /*return*/]; } }); }); }); it('min gradient: 3D, axes=2, keepDims=false', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor3d([[[0, -20], [-10, -15]], [[10, 30], [20, 15]]]); dy = tf.tensor2d([[-1, -1], [-1, -1]]); axis = 2; gradients = tf.grad(function (v) { return tf.min(v, axis); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, 0, -1, -1, 0, 0, -1]]); expect(gradients.shape).toEqual([2, 2, 2]); return [2 /*return*/]; } }); }); }); it('min gradient: 3D, axes=2, keepDims=true', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, keepDims, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor3d([[[0, -20], [-10, -15]], [[10, 30], [20, 15]]]); dy = tf.tensor3d([[[-1], [-1]], [[-1], [-1]]]); axis = 2; keepDims = true; gradients = tf.grad(function (v) { return tf.min(v, axis, keepDims); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, 0, -1, -1, 0, 0, -1]]); expect(gradients.shape).toEqual([2, 2, 2]); return [2 /*return*/]; } }); }); }); it('min gradient: ties, 4D, axes=[1, 2, 3], keepDims=false', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor4d([ [[[0, -20], [-20, -20]], [[10, 30], [10, 30]]], [[[0, 20], [20, 20]], [[-10, -30], [-10, -30]]] ]); dy = tf.tensor1d([-1, -1]); axis = [1, 2, 3]; gradients = tf.grad(function (v) { return tf.min(v, axis); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1]]); expect(gradients.shape).toEqual([2, 2, 2, 2]); return [2 /*return*/]; } }); }); }); it('min gradient: ties, 4D, axes=[2, 3], keepDims=true', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, keepDims, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor4d([ [[[0, -20], [-20, -20]], [[10, 30], [10, 30]]], [[[0, 20], [20, 20]], [[-10, -30], [-10, -30]]] ]); dy = tf.tensor4d([[[[-1]], [[-2]]], [[[-3]], [[-4]]]]); axis = [2, 3]; keepDims = true; gradients = tf.grad(function (v) { return tf.min(v, axis, keepDims); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, -1, -1, -2, 0, -2, 0, -3, 0, 0, 0, 0, -4, 0, -4]]); expect(gradients.shape).toEqual([2, 2, 2, 2]); return [2 /*return*/]; } }); }); }); it('throws error for string tensor', function () { expect(function () { return tf.min(['a']); }) .toThrowError(/Argument 'x' passed to 'min' must be numeric tensor/); }); }); jasmine_util_1.describeWithFlags('max', jasmine_util_1.ALL_ENVS, function () { it('with one element dominating', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([3, -1, 0, 100, -7, 2]); r = tf.max(a); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), 100]); return [2 /*return*/]; } }); }); }); it('with all elements being the same', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([3, 3, 3]); r = tf.max(a); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), 3]); return [2 /*return*/]; } }); }); }); it('ignores NaNs', function () { return __awaiter(_this, void 0, void 0, function () { var _a; return __generator(this, function (_b) { switch (_b.label) { case 0: _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.max([3, NaN, 2]).data()]; case 1: _a.apply(void 0, [_b.sent(), 3]); return [2 /*return*/]; } }); }); }); it('2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, -1, 0, 100, -7, 2], [2, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.max(a).data()]; case 1: _a.apply(void 0, [_b.sent(), 100]); return [2 /*return*/]; } }); }); }); it('2D axis=[0,1]', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, -1, 0, 100, -7, 2], [2, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.max(a, [0, 1]).data()]; case 1: _a.apply(void 0, [_b.sent(), 100]); return [2 /*return*/]; } }); }); }); it('2D, axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, -1, 0, 100, -7, 2], [2, 3]); r = tf.max(a, [0]); expect(r.shape).toEqual([3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [100, -1, 2]]); return [2 /*return*/]; } }); }); }); it('2D, axis=0, keepDims', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, -1, 0, 100, -7, 2], [2, 3]); r = tf.max(a, [0], true /* keepDims */); expect(r.shape).toEqual([1, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [100, -1, 2]]); return [2 /*return*/]; } }); }); }); it('2D, axis=1 provided as a number', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, 2, 5, 100, -7, 2], [2, 3]); r = tf.max(a, 1); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [5, 100]]); return [2 /*return*/]; } }); }); }); it('2D, axis = -1 provided as a number', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, 2, 5, 100, -7, 2], [2, 3]); r = tf.max(a, -1); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [5, 100]]); return [2 /*return*/]; } }); }); }); it('2D, axis=[1]', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, 2, 5, 100, -7, 2], [2, 3]); r = tf.max(a, [1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [5, 100]]); return [2 /*return*/]; } }); }); }); it('6D, axis=[5]', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, expectedResult, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.range(0, 64).reshape([2, 2, 2, 2, 2, 2]); r = tf.max(a, [5]); expectedResult = [ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63 ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), expectedResult]); return [2 /*return*/]; } }); }); }); it('throws when passed a non-tensor', function () { expect(function () { return tf.max({}); }) .toThrowError(/Argument 'x' passed to 'max' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: r = tf.max([3, -1, 0, 100, -7, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), 100]); return [2 /*return*/]; } }); }); }); it('max gradient: Scalar', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.scalar(42); dy = tf.scalar(-1); gradients = tf.grad(function (v) { return tf.max(v); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [-1]]); return [2 /*return*/]; } }); }); }); it('gradient with clones', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.scalar(42); dy = tf.scalar(-1); gradients = tf.grad(function (v) { return tf.max(v.clone()).clone(); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [-1]]); return [2 /*return*/]; } }); }); }); it('max gradient: 1D, ties', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor1d([1, 3, 7, 7]); dy = tf.scalar(-1); gradients = tf.grad(function (v) { return tf.max(v); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 0, -1, -1]]); return [2 /*return*/]; } }); }); }); it('max gradient: 2D, axes=-1, keepDims=false', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor2d([[0, 20, 10], [-10, -30, -20]]); dy = tf.tensor1d([-1, -1]); axis = -1; gradients = tf.grad(function (v) { return tf.max(v, axis); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, 0, -1, 0, 0]]); expect(gradients.shape).toEqual([2, 3]); return [2 /*return*/]; } }); }); }); it('max gradient: ties, 2D, axes=-1, keepDims=false', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor2d([[0, 20, 20], [-10, -30, -10]]); dy = tf.tensor1d([-1, -1]); axis = -1; gradients = tf.grad(function (v) { return tf.max(v, axis); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, -1, -1, 0, -1]]); expect(gradients.shape).toEqual([2, 3]); return [2 /*return*/]; } }); }); }); it('max gradient: 2D, axes=0, keepDims=false', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor2d([[0, 20, 10], [-10, -30, 20]]); dy = tf.tensor1d([-1, -1, -1]); axis = 0; gradients = tf.grad(function (v) { return tf.max(v, axis); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [-1, -1, 0, 0, 0, -1]]); expect(gradients.shape).toEqual([2, 3]); return [2 /*return*/]; } }); }); }); it('max gradient: 2D, axes=-1, keepDims=true', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, keepDims, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor2d([[0, 20, 10], [-10, -30, -20]]); dy = tf.tensor2d([[-1], [-1]]); axis = -1; keepDims = true; gradients = tf.grad(function (v) { return tf.max(v, axis, keepDims); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, 0, -1, 0, 0]]); expect(gradients.shape).toEqual([2, 3]); return [2 /*return*/]; } }); }); }); it('max gradient: 2D, axes=0, keepDims=true', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, keepDims, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor2d([[0, 20, 10], [-10, -30, 20]]); dy = tf.tensor2d([[-1, -1, -1]]); axis = 0; keepDims = true; gradients = tf.grad(function (v) { return tf.max(v, axis, keepDims); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [-1, -1, 0, 0, 0, -1]]); expect(gradients.shape).toEqual([2, 3]); return [2 /*return*/]; } }); }); }); it('max gradient: 3D, axes=[1, 2], keepDims=false', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor3d([[[0, 20], [10, 15]], [[-10, -30], [-20, -15]]]); dy = tf.tensor1d([-1, -1]); axis = [1, 2]; gradients = tf.grad(function (v) { return tf.max(v, axis); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, 0, 0, -1, 0, 0, 0]]); expect(gradients.shape).toEqual([2, 2, 2]); return [2 /*return*/]; } }); }); }); it('max gradient: ties, 3D, axes=[1, 2], keepDims=false', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor3d([[[0, 20], [20, 20]], [[-10, -30], [-10, -15]]]); dy = tf.tensor1d([-1, -1]); axis = [1, 2]; gradients = tf.grad(function (v) { return tf.max(v, axis); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, -1, -1, -1, 0, -1, 0]]); expect(gradients.shape).toEqual([2, 2, 2]); return [2 /*return*/]; } }); }); }); it('max gradient: 3D, axes=2, keepDims=false', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor3d([[[0, 20], [10, 15]], [[-10, -30], [-20, -15]]]); dy = tf.tensor2d([[-1, -1], [-1, -1]]); axis = 2; gradients = tf.grad(function (v) { return tf.max(v, axis); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, 0, -1, -1, 0, 0, -1]]); expect(gradients.shape).toEqual([2, 2, 2]); return [2 /*return*/]; } }); }); }); it('max gradient: 3D, axes=2, keepDims=true', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, keepDims, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor3d([[[0, 20], [10, 15]], [[-10, -30], [-20, -15]]]); dy = tf.tensor3d([[[-1], [-1]], [[-1], [-1]]]); axis = 2; keepDims = true; gradients = tf.grad(function (v) { return tf.max(v, axis, keepDims); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, 0, -1, -1, 0, 0, -1]]); expect(gradients.shape).toEqual([2, 2, 2]); return [2 /*return*/]; } }); }); }); it('max gradient: ties, 4D, axes=[1, 2, 3], keepDims=false', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor4d([ [[[0, 20], [20, 20]], [[-10, -30], [-10, -30]]], [[[0, -20], [-20, -20]], [[10, 30], [10, 30]]] ]); dy = tf.tensor1d([-1, -1]); axis = [1, 2, 3]; gradients = tf.grad(function (v) { return tf.max(v, axis); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1]]); expect(gradients.shape).toEqual([2, 2, 2, 2]); return [2 /*return*/]; } }); }); }); it('max gradient: ties, 4D, axes=[2, 3], keepDims=true', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, axis, keepDims, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor4d([ [[[0, 20], [20, 20]], [[-10, -30], [-10, -30]]], [[[0, -20], [-20, -20]], [[10, 30], [10, 30]]] ]); dy = tf.tensor4d([[[[-1]], [[-2]]], [[[-3]], [[-4]]]]); axis = [2, 3]; keepDims = true; gradients = tf.grad(function (v) { return tf.max(v, axis, keepDims); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, -1, -1, -1, -2, 0, -2, 0, -3, 0, 0, 0, 0, -4, 0, -4]]); expect(gradients.shape).toEqual([2, 2, 2, 2]); return [2 /*return*/]; } }); }); }); it('throws error for string tensor', function () { expect(function () { return tf.max(['a']); }) .toThrowError(/Argument 'x' passed to 'max' must be numeric tensor/); }); }); jasmine_util_1.describeWithFlags('argmax', jasmine_util_1.ALL_ENVS, function () { it('Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, 0, 3, 2]); result = tf.argMax(a); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), 2]); return [2 /*return*/]; } }); }); }); it('one value', function () { return __awaiter(_this, void 0, void 0, function () { var a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([10]); result = tf.argMax(a); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), 0]); return [2 /*return*/]; } }); }); }); it('N > than parallelization threshold', function () { return __awaiter(_this, void 0, void 0, function () { var n, values, i, a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: n = reduce_util.PARALLELIZE_THRESHOLD * 2; values = new Float32Array(n); for (i = 0; i < n; i++) { values[i] = i; } a = tf.tensor1d(values); result = tf.argMax(a); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), n - 1]); return [2 /*return*/]; } }); }); }); it('3D, N > than parallelization threshold', function () { return __awaiter(_this, void 0, void 0, function () { var n, values, i, a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: n = reduce_util.PARALLELIZE_THRESHOLD * 2; values = new Float32Array(n); for (i = 0; i < n; i++) { values[i] = i; } a = tf.tensor3d(values, [1, 1, n]); result = tf.argMax(a, -1); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), n - 1]); return [2 /*return*/]; } }); }); }); it('max index corresponds to start of a non-initial window', function () { return __awaiter(_this, void 0, void 0, function () { var n, windowSize, values, index, a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: n = reduce_util.PARALLELIZE_THRESHOLD * 2; windowSize = reduce_util.computeOptimalWindowSize(n); values = new Float32Array(n); index = windowSize * 2; values[index] = 1; a = tf.tensor1d(values); result = tf.argMax(a); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), index]); return [2 /*return*/]; } }); }); }); it('5D, max index corresponds to start of a non-initial window', function () { return __awaiter(_this, void 0, void 0, function () { var n, windowSize, values, index, a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: n = reduce_util.PARALLELIZE_THRESHOLD * 2; windowSize = reduce_util.computeOptimalWindowSize(n); values = new Float32Array(n); index = windowSize * 2; values[index] = 1; a = tf.tensor5d(values, [1, 1, 1, 1, n]); result = tf.argMax(a, -1); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), index]); return [2 /*return*/]; } }); }); }); it('ignores NaNs', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0, 3, 5, NaN, 3]); res = tf.argMax(a); expect(res.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), 2]); return [2 /*return*/]; } }); }); }); it('2D, no axis specified', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, -1, 0, 100, -7, 2], [2, 3]); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, tf.argMax(a).data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 0, 1]]); return [2 /*return*/]; } }); }); }); it('4D, no axis specified', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor4d([3, -1, 0, 100, -7, 2], [2, 1, 1, 3]); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, tf.argMax(a).data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 0, 1]]); return [2 /*return*/]; } }); }); }); it('2D, axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, -1, 0, 100, -7, 2], [2, 3]); r = tf.argMax(a, 0); expect(r.shape).toEqual([3]); expect(r.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 0, 1]]); return [2 /*return*/]; } }); }); }); it('6D, axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor6d([3, -1, 0, 100, -7, 2], [2, 1, 1, 1, 1, 3]); r = tf.argMax(a, 0); expect(r.shape).toEqual([1, 1, 1, 1, 3]); expect(r.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 0, 1]]); return [2 /*return*/]; } }); }); }); it('2D, axis=1', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, 2, 5, 100, -7, 2], [2, 3]); r = tf.argMax(a, 1); expect(r.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 0]]); return [2 /*return*/]; } }); }); }); it('2D, axis = -1', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, 2, 5, 100, -7, 2], [2, 3]); r = tf.argMax(a, -1); expect(r.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 0]]); return [2 /*return*/]; } }); }); }); it('throws when passed a non-tensor', function () { expect(function () { return tf.argMax({}); }) .toThrowError(/Argument 'x' passed to 'argMax' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: result = tf.argMax([1, 0, 3, 2]); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), 2]); return [2 /*return*/]; } }); }); }); it('accepts tensor with bool values', function () { return __awaiter(_this, void 0, void 0, function () { var t, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: t = tf.tensor1d([0, 1], 'bool'); result = tf.argMax(t); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), 1]); return [2 /*return*/]; } }); }); }); it('has gradient', function () { return __awaiter(_this, void 0, void 0, function () { var a, dy, da, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, 2, 5, 100, -7, 2], [2, 3]); dy = tf.ones([3], 'float32'); da = tf.grad(function (x) { return tf.argMax(x); })(a, dy); expect(da.dtype).toBe('float32'); expect(da.shape).toEqual([2, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 0, 0, 0, 0, 0]]); return [2 /*return*/]; } }); }); }); it('gradient with clones', function () { return __awaiter(_this, void 0, void 0, function () { var a, dy, da, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, 2, 5, 100, -7, 2], [2, 3]); dy = tf.ones([3], 'float32'); da = tf.grad(function (x) { return tf.argMax(x.clone()).clone(); })(a, dy); expect(da.dtype).toBe('float32'); expect(da.shape).toEqual([2, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 0, 0, 0, 0, 0]]); return [2 /*return*/]; } }); }); }); it('throws error for string tensor', function () { expect(function () { return tf.argMax(['a']); }) .toThrowError(/Argument 'x' passed to 'argMax' must be numeric tensor/); }); }); jasmine_util_1.describeWithFlags('argmin', jasmine_util_1.ALL_ENVS, function () { it('Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, 0, 3, 2]); result = tf.argMin(a); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), 1]); return [2 /*return*/]; } }); }); }); it('one value', function () { return __awaiter(_this, void 0, void 0, function () { var a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([10]); result = tf.argMin(a); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), 0]); return [2 /*return*/]; } }); }); }); it('N > than parallelization threshold', function () { return __awaiter(_this, void 0, void 0, function () { var n, values, i, a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: n = reduce_util.PARALLELIZE_THRESHOLD * 2; values = new Float32Array(n); for (i = 0; i < n; i++) { values[i] = n - i; } a = tf.tensor1d(values); result = tf.argMin(a); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), n - 1]); return [2 /*return*/]; } }); }); }); it('4D, N > than parallelization threshold', function () { return __awaiter(_this, void 0, void 0, function () { var n, values, i, a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: n = reduce_util.PARALLELIZE_THRESHOLD * 2; values = new Float32Array(n); for (i = 0; i < n; i++) { values[i] = n - i; } a = tf.tensor4d(values, [1, 1, 1, n]); result = tf.argMin(a, -1); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), n - 1]); return [2 /*return*/]; } }); }); }); it('min index corresponds to start of a non-initial window', function () { return __awaiter(_this, void 0, void 0, function () { var n, windowSize, values, index, a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: n = reduce_util.PARALLELIZE_THRESHOLD * 2; windowSize = reduce_util.computeOptimalWindowSize(n); values = new Float32Array(n); index = windowSize * 2; values[index] = -1; a = tf.tensor1d(values); result = tf.argMin(a); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), index]); return [2 /*return*/]; } }); }); }); it('ignores NaNs', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([5, 0, NaN, -1, 3]); res = tf.argMin(a); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), 3]); return [2 /*return*/]; } }); }); }); it('3D, ignores NaNs', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor3d([5, 0, NaN, -1, 3], [1, 1, 5]); res = tf.argMin(a, -1); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), 3]); return [2 /*return*/]; } }); }); }); it('2D, no axis specified', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, -1, 0, 100, -7, 2], [2, 3]); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, tf.argMin(a).data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 1, 0]]); return [2 /*return*/]; } }); }); }); it('2D, axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, -1, 0, 100, -7, 2], [2, 3]); r = tf.argMin(a, 0); expect(r.shape).toEqual([3]); expect(r.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 1, 0]]); return [2 /*return*/]; } }); }); }); it('2D, axis=1', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, 2, 5, 100, -7, -8], [2, 3]); r = tf.argMin(a, 1); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2]]); return [2 /*return*/]; } }); }); }); it('2D, axis = -1', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, 2, 5, 100, -7, -8], [2, 3]); r = tf.argMin(a, -1); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2]]); return [2 /*return*/]; } }); }); }); it('throws when passed a non-tensor', function () { expect(function () { return tf.argMin({}); }) .toThrowError(/Argument 'x' passed to 'argMin' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: result = tf.argMin([1, 0, 3, 2]); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), 1]); return [2 /*return*/]; } }); }); }); it('accepts tensor with bool values', function () { return __awaiter(_this, void 0, void 0, function () { var t, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: t = tf.tensor1d([0, 1], 'bool'); result = tf.argMin(t); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), 0]); return [2 /*return*/]; } }); }); }); it('has gradient', function () { return __awaiter(_this, void 0, void 0, function () { var a, dy, da, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, 2, 5, 100, -7, 2], [2, 3]); dy = tf.ones([3], 'float32'); da = tf.grad(function (x) { return tf.argMin(x); })(a, dy); expect(da.dtype).toBe('float32'); expect(da.shape).toEqual([2, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 0, 0, 0, 0, 0]]); return [2 /*return*/]; } }); }); }); it('gradient with clones', function () { return __awaiter(_this, void 0, void 0, function () { var a, dy, da, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([3, 2, 5, 100, -7, 2], [2, 3]); dy = tf.ones([3], 'float32'); da = tf.grad(function (x) { return tf.argMin(x.clone()).clone(); })(a, dy); expect(da.dtype).toBe('float32'); expect(da.shape).toEqual([2, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 0, 0, 0, 0, 0]]); return [2 /*return*/]; } }); }); }); it('throws error for string tensor', function () { expect(function () { return tf.argMin(['a']); }) .toThrowError(/Argument 'x' passed to 'argMin' must be numeric tensor/); }); }); jasmine_util_1.describeWithFlags('logSumExp', jasmine_util_1.ALL_ENVS, function () { it('0', function () { return __awaiter(_this, void 0, void 0, function () { var a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.scalar(0); result = tf.logSumExp(a); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), 0]); return [2 /*return*/]; } }); }); }); it('basic', function () { return __awaiter(_this, void 0, void 0, function () { var a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, 2, -3]); result = tf.logSumExp(a); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), Math.log(Math.exp(1) + Math.exp(2) + Math.exp(-3))]); return [2 /*return*/]; } }); }); }); it('propagates NaNs', function () { return __awaiter(_this, void 0, void 0, function () { var a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, 2, NaN]); result = tf.logSumExp(a); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), NaN]); return [2 /*return*/]; } }); }); }); it('axes=0 in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); r = tf.logSumExp(a, [0]); expect(r.shape).toEqual([2]); expected = [ Math.log(Math.exp(1) + Math.exp(3) + Math.exp(0)), Math.log(Math.exp(2) + Math.exp(0) + Math.exp(1)) ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('axes=0 in 2D array, keepDims', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); r = tf.logSumExp(a, [0], true /* keepDims */); expect(r.shape).toEqual([1, 2]); expected = [ Math.log(Math.exp(1) + Math.exp(3) + Math.exp(0)), Math.log(Math.exp(2) + Math.exp(0) + Math.exp(1)) ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('axes=1 in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); res = tf.logSumExp(a, [1]); expect(res.shape).toEqual([3]); expected = [ Math.log(Math.exp(1) + Math.exp(2)), Math.log(Math.exp(3) + Math.exp(0)), Math.log(Math.exp(0) + Math.exp(1)), ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('axes = -1 in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); res = tf.logSumExp(a, -1); expect(res.shape).toEqual([3]); expected = [ Math.log(Math.exp(1) + Math.exp(2)), Math.log(Math.exp(3) + Math.exp(0)), Math.log(Math.exp(0) + Math.exp(1)), ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('2D, axes=1 provided as a single digit', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [2, 3]); res = tf.logSumExp(a, 1); expect(res.shape).toEqual([2]); expected = [ Math.log(Math.exp(1) + Math.exp(2) + Math.exp(3)), Math.log(Math.exp(0) + Math.exp(0) + Math.exp(1)) ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('axes=0,1 in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); res = tf.logSumExp(a, [0, 1]); expect(res.shape).toEqual([]); expected = [Math.log(Math.exp(1) + Math.exp(2) + Math.exp(3) + Math.exp(0) + Math.exp(0) + Math.exp(1))]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('throws when passed a non-tensor', function () { expect(function () { return tf.logSumExp({}); }) .toThrowError(/Argument 'x' passed to 'logSumExp' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: result = tf.logSumExp([1, 2, -3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), Math.log(Math.exp(1) + Math.exp(2) + Math.exp(-3))]); return [2 /*return*/]; } }); }); }); it('throws error for string tensor', function () { expect(function () { return tf.logSumExp(['a']); }) .toThrowError(/Argument 'x' passed to 'logSumExp' must be numeric tensor/); }); }); jasmine_util_1.describeWithFlags('sum', jasmine_util_1.ALL_ENVS, function () { it('basic', function () { return __awaiter(_this, void 0, void 0, function () { var a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); result = tf.sum(a); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), 7]); return [2 /*return*/]; } }); }); }); it('propagates NaNs', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, NaN, 0, 1], [3, 2]); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, tf.sum(a).data()]; case 1: _a.apply(void 0, [_b.sent(), NaN]); return [2 /*return*/]; } }); }); }); it('sum over dtype int32', function () { return __awaiter(_this, void 0, void 0, function () { var a, sum, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, 5, 7, 3], 'int32'); sum = tf.sum(a); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, sum.data()]; case 1: _a.apply(void 0, [_b.sent(), 16]); return [2 /*return*/]; } }); }); }); it('sum over dtype bool', function () { return __awaiter(_this, void 0, void 0, function () { var a, sum, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([true, false, false, true, true], 'bool'); sum = tf.sum(a); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, sum.data()]; case 1: _a.apply(void 0, [_b.sent(), 3]); return [2 /*return*/]; } }); }); }); it('sums all values in 2D array with keep dim', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); res = tf.sum(a, null, true /* keepDims */); expect(res.shape).toEqual([1, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [7]]); return [2 /*return*/]; } }); }); }); it('sums across axis=0 in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); res = tf.sum(a, [0]); expect(res.shape).toEqual([2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [4, 3]]); return [2 /*return*/]; } }); }); }); it('sums across axis=0 in 2D array, keepDims', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); res = tf.sum(a, [0], true /* keepDims */); expect(res.shape).toEqual([1, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [4, 3]]); return [2 /*return*/]; } }); }); }); it('sums across axis=1 in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); res = tf.sum(a, [1]); expect(res.shape).toEqual([3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, 3, 1]]); return [2 /*return*/]; } }); }); }); it('2D, axis=1 provided as number', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [2, 3]); res = tf.sum(a, 1); expect(res.shape).toEqual([2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [6, 1]]); return [2 /*return*/]; } }); }); }); it('2D, axis = -1 provided as number', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [2, 3]); res = tf.sum(a, -1); expect(res.shape).toEqual([2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [6, 1]]); return [2 /*return*/]; } }); }); }); it('sums across axis=0,1 in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); res = tf.sum(a, [0, 1]); expect(res.shape).toEqual([]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [7]]); return [2 /*return*/]; } }); }); }); it('2D, axis=[-1,-2] in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); res = tf.sum(a, [-1, -2]); expect(res.shape).toEqual([]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [7]]); return [2 /*return*/]; } }); }); }); it('gradients: sum(2d)', function () { return __awaiter(_this, void 0, void 0, function () { var a, dy, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); dy = tf.scalar(10); gradients = tf.grad(function (a) { return a.sum(); })(a, dy); expect(gradients.shape).toEqual(a.shape); expect(gradients.dtype).toEqual('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [10, 10, 10, 10, 10, 10]]); return [2 /*return*/]; } }); }); }); it('gradient with clones', function () { return __awaiter(_this, void 0, void 0, function () { var a, dy, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); dy = tf.scalar(10); gradients = tf.grad(function (a) { return a.clone().sum().clone(); })(a, dy); expect(gradients.shape).toEqual(a.shape); expect(gradients.dtype).toEqual('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [10, 10, 10, 10, 10, 10]]); return [2 /*return*/]; } }); }); }); it('gradients: sum(2d, axis=0)', function () { return __awaiter(_this, void 0, void 0, function () { var a, dy, axis, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([[1, 2], [3, 0], [0, 1]], [3, 2]); dy = tf.tensor1d([10, 20]); axis = 0; gradients = tf.grad(function (a) { return a.sum(axis); })(a, dy); expect(gradients.shape).toEqual(a.shape); expect(gradients.dtype).toEqual('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [10, 20, 10, 20, 10, 20]]); return [2 /*return*/]; } }); }); }); it('gradients: sum(2d, axis=1)', function () { return __awaiter(_this, void 0, void 0, function () { var a, dy, axis, gradients, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([[1, 2], [3, 0], [0, 1]], [3, 2]); dy = tf.tensor1d([10, 20, 30]); axis = 1; gradients = tf.grad(function (a) { return a.sum(axis); })(a, dy); expect(gradients.shape).toEqual(a.shape); expect(gradients.dtype).toEqual('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradients.data()]; case 1: _a.apply(void 0, [_b.sent(), [10, 10, 20, 20, 30, 30]]); return [2 /*return*/]; } }); }); }); it('throws when passed a non-tensor', function () { expect(function () { return tf.sum({}); }) .toThrowError(/Argument 'x' passed to 'sum' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: result = tf.sum([[1, 2], [3, 0], [0, 1]]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), 7]); return [2 /*return*/]; } }); }); }); it('throws error for string tensor', function () { expect(function () { return tf.sum(['a']); }) .toThrowError(/Argument 'x' passed to 'sum' must be numeric tensor/); }); }); jasmine_util_1.describeWithFlags('prod', jasmine_util_1.ALL_ENVS, function () { it('basic', function () { return __awaiter(_this, void 0, void 0, function () { var a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); result = tf.prod(a); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), 0]); return [2 /*return*/]; } }); }); }); it('propagates NaNs', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, NaN, 0, 1], [3, 2]); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, tf.prod(a).data()]; case 1: _a.apply(void 0, [_b.sent(), NaN]); return [2 /*return*/]; } }); }); }); it('prod over dtype int32', function () { return __awaiter(_this, void 0, void 0, function () { var a, prod, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, 5, 7, 3], 'int32'); prod = tf.prod(a); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, prod.data()]; case 1: _a.apply(void 0, [_b.sent(), 105]); return [2 /*return*/]; } }); }); }); it('prod over dtype bool', function () { return __awaiter(_this, void 0, void 0, function () { var a, prod, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([true, false, false, true, true], 'bool'); prod = tf.prod(a); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, prod.data()]; case 1: _a.apply(void 0, [_b.sent(), 0]); return [2 /*return*/]; } }); }); }); it('prods all values in 2D array with keep dim', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 1, 0, 1], [3, 2]); res = tf.prod(a, null, true /* keepDims */); expect(res.shape).toEqual([1, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), 0]); return [2 /*return*/]; } }); }); }); it('prods across axis=0 in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 1, 0, 1], [3, 2]); res = tf.prod(a, [0]); expect(res.shape).toEqual([2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 2]]); return [2 /*return*/]; } }); }); }); it('prods across axis=0 in 2D array, keepDims', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 1, 0, 1], [3, 2]); res = tf.prod(a, [0], true /* keepDims */); expect(res.shape).toEqual([1, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 2]]); return [2 /*return*/]; } }); }); }); it('prods across axis=1 in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 1, 1, 1], [3, 2]); res = tf.prod(a, [1]); expect(res.shape).toEqual([3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 3, 1]]); return [2 /*return*/]; } }); }); }); it('2D, axis=1 provided as number', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 1, 1, 1], [2, 3]); res = tf.prod(a, 1); expect(res.shape).toEqual([2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [6, 1]]); return [2 /*return*/]; } }); }); }); it('2D, axis = -1 provided as number', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 1, 1, 1], [2, 3]); res = tf.prod(a, -1); expect(res.shape).toEqual([2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [6, 1]]); return [2 /*return*/]; } }); }); }); it('prods across axis=0,1 in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 1, 1, 1], [3, 2]); res = tf.prod(a, [0, 1]); expect(res.shape).toEqual([]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [6]]); return [2 /*return*/]; } }); }); }); it('2D, axis=[-1,-2] in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 1, 1, 1], [3, 2]); res = tf.prod(a, [-1, -2]); expect(res.shape).toEqual([]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [6]]); return [2 /*return*/]; } }); }); }); it('throws when passed a non-tensor', function () { expect(function () { return tf.prod({}); }) .toThrowError(/Argument 'x' passed to 'prod' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: result = tf.prod([[1, 2], [3, 1], [1, 1]]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), 6]); return [2 /*return*/]; } }); }); }); it('throws error for string tensor', function () { expect(function () { return tf.prod(['a']); }) .toThrowError(/Argument 'x' passed to 'prod' must be numeric tensor/); }); }); jasmine_util_1.describeWithFlags('mean', jasmine_util_1.ALL_ENVS, function () { it('basic', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); r = tf.mean(a); expect(r.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), 7 / 6]); return [2 /*return*/]; } }); }); }); it('propagates NaNs', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, NaN, 0, 1], [3, 2]); r = tf.mean(a); expect(r.dtype).toBe('float32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), NaN]); return [2 /*return*/]; } }); }); }); it('mean(int32) => float32', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, 5, 7, 3], 'int32'); r = tf.mean(a); expect(r.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), 4]); return [2 /*return*/]; } }); }); }); it('mean(bool) => float32', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([true, false, false, true, true], 'bool'); r = tf.mean(a); expect(r.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), 3 / 5]); return [2 /*return*/]; } }); }); }); it('2D array with keep dim', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); res = tf.mean(a, null, true /* keepDims */); expect(res.shape).toEqual([1, 1]); expect(res.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [7 / 6]]); return [2 /*return*/]; } }); }); }); it('axis=0 in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); res = tf.mean(a, [0]); expect(res.shape).toEqual([2]); expect(res.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [4 / 3, 1]]); return [2 /*return*/]; } }); }); }); it('axis=0 in 2D array, keepDims', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); res = tf.mean(a, [0], true /* keepDims */); expect(res.shape).toEqual([1, 2]); expect(res.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [4 / 3, 1]]); return [2 /*return*/]; } }); }); }); it('axis=1 in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); res = tf.mean(a, [1]); expect(res.dtype).toBe('float32'); expect(res.shape).toEqual([3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [1.5, 1.5, 0.5]]); return [2 /*return*/]; } }); }); }); it('axis = -1 in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); res = tf.mean(a, [-1]); expect(res.dtype).toBe('float32'); expect(res.shape).toEqual([3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [1.5, 1.5, 0.5]]); return [2 /*return*/]; } }); }); }); it('2D, axis=1 provided as number', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [2, 3]); res = tf.mean(a, 1); expect(res.shape).toEqual([2]); expect(res.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 1 / 3]]); return [2 /*return*/]; } }); }); }); it('axis=0,1 in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); res = tf.mean(a, [0, 1]); expect(res.shape).toEqual([]); expect(res.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [7 / 6]]); return [2 /*return*/]; } }); }); }); it('gradients', function () { return __awaiter(_this, void 0, void 0, function () { var a, dy, da, dyVal, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); dy = tf.scalar(1.5); da = tf.grad(function (a) { return a.mean(); })(a, dy); return [4 /*yield*/, dy.array()]; case 1: dyVal = _b.sent(); expect(da.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 2: _a.apply(void 0, [_b.sent(), [ dyVal / a.size, dyVal / a.size, dyVal / a.size, dyVal / a.size, dyVal / a.size, dyVal / a.size ]]); return [2 /*return*/]; } }); }); }); it('gradient with clones', function () { return __awaiter(_this, void 0, void 0, function () { var a, dy, da, dyVal, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); dy = tf.scalar(1.5); da = tf.grad(function (a) { return a.clone().mean().clone(); })(a, dy); return [4 /*yield*/, dy.array()]; case 1: dyVal = _b.sent(); expect(da.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 2: _a.apply(void 0, [_b.sent(), [ dyVal / a.size, dyVal / a.size, dyVal / a.size, dyVal / a.size, dyVal / a.size, dyVal / a.size ]]); return [2 /*return*/]; } }); }); }); it('gradients throws for defined axis', function () { var a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); var dy = tf.scalar(1.5); expect(function () { return tf.grad(function (a) { return a.mean(1); })(a, dy); }).toThrowError(); }); it('throws when passed a non-tensor', function () { expect(function () { return tf.mean({}); }) .toThrowError(/Argument 'x' passed to 'mean' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: r = tf.mean([[1, 2, 3], [0, 0, 1]]); expect(r.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), 7 / 6]); return [2 /*return*/]; } }); }); }); it('throws error for string tensor', function () { expect(function () { return tf.mean(['a']); }) .toThrowError(/Argument 'x' passed to 'mean' must be numeric tensor/); }); }); jasmine_util_1.describeWithFlags('moments', jasmine_util_1.ALL_ENVS, function () { it('basic', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a, mean, variance, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); _a = tf.moments(a), mean = _a.mean, variance = _a.variance; expect(mean.dtype).toBe('float32'); expect(variance.dtype).toBe('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, mean.data()]; case 1: _b.apply(void 0, [_d.sent(), 7 / 6]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, variance.data()]; case 2: _c.apply(void 0, [_d.sent(), 1.1389]); return [2 /*return*/]; } }); }); }); it('propagates NaNs', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a, mean, variance, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor2d([1, 2, 3, NaN, 0, 1], [3, 2]); _a = tf.moments(a), mean = _a.mean, variance = _a.variance; expect(mean.dtype).toBe('float32'); expect(variance.dtype).toBe('float32'); _b = test_util_1.expectArraysEqual; return [4 /*yield*/, mean.data()]; case 1: _b.apply(void 0, [_d.sent(), NaN]); _c = test_util_1.expectArraysEqual; return [4 /*yield*/, variance.data()]; case 2: _c.apply(void 0, [_d.sent(), NaN]); return [2 /*return*/]; } }); }); }); it('moments(int32) => float32', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a, mean, variance, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor1d([1, 5, 7, 3], 'int32'); _a = tf.moments(a), mean = _a.mean, variance = _a.variance; expect(mean.dtype).toBe('float32'); expect(variance.dtype).toBe('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, mean.data()]; case 1: _b.apply(void 0, [_d.sent(), 4]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, variance.data()]; case 2: _c.apply(void 0, [_d.sent(), 5]); return [2 /*return*/]; } }); }); }); it('moments(bool) => float32', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a, mean, variance, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor1d([true, false, false, true, true], 'bool'); _a = tf.moments(a), mean = _a.mean, variance = _a.variance; expect(mean.dtype).toBe('float32'); expect(variance.dtype).toBe('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, mean.data()]; case 1: _b.apply(void 0, [_d.sent(), 3 / 5]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, variance.data()]; case 2: _c.apply(void 0, [_d.sent(), 0.23999998]); return [2 /*return*/]; } }); }); }); it('2D array with keep dim', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a, mean, variance, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); _a = tf.moments(a, null, true /* keepDims */), mean = _a.mean, variance = _a.variance; expect(mean.shape).toEqual([1, 1]); expect(mean.dtype).toBe('float32'); expect(variance.shape).toEqual([1, 1]); expect(variance.dtype).toBe('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, mean.data()]; case 1: _b.apply(void 0, [_d.sent(), [7 / 6]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, variance.data()]; case 2: _c.apply(void 0, [_d.sent(), [1.138889]]); return [2 /*return*/]; } }); }); }); it('axis=0 in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a, mean, variance, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); _a = tf.moments(a, [0]), mean = _a.mean, variance = _a.variance; expect(mean.shape).toEqual([2]); expect(mean.dtype).toBe('float32'); expect(variance.shape).toEqual([2]); expect(variance.dtype).toBe('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, mean.data()]; case 1: _b.apply(void 0, [_d.sent(), [4 / 3, 1]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, variance.data()]; case 2: _c.apply(void 0, [_d.sent(), [1.556, 2 / 3]]); return [2 /*return*/]; } }); }); }); it('axis=1 in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a, mean, variance, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); _a = tf.moments(a, [1]), mean = _a.mean, variance = _a.variance; expect(mean.dtype).toBe('float32'); expect(mean.shape).toEqual([3]); expect(variance.dtype).toBe('float32'); expect(variance.shape).toEqual([3]); _b = test_util_1.expectArraysClose; return [4 /*yield*/, mean.data()]; case 1: _b.apply(void 0, [_d.sent(), [1.5, 1.5, 0.5]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, variance.data()]; case 2: _c.apply(void 0, [_d.sent(), [0.25, 2.25, 0.25]]); return [2 /*return*/]; } }); }); }); it('2D, axis=1 provided as number', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a, mean, variance, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [2, 3]); _a = tf.moments(a, 1), mean = _a.mean, variance = _a.variance; expect(mean.shape).toEqual([2]); expect(mean.dtype).toBe('float32'); expect(variance.shape).toEqual([2]); expect(variance.dtype).toBe('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, mean.data()]; case 1: _b.apply(void 0, [_d.sent(), [2, 1 / 3]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, variance.data()]; case 2: _c.apply(void 0, [_d.sent(), [2 / 3, 0.222]]); return [2 /*return*/]; } }); }); }); it('2D, axis=-1 provided as number', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a, mean, variance, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [2, 3]); _a = tf.moments(a, -1), mean = _a.mean, variance = _a.variance; expect(mean.shape).toEqual([2]); expect(mean.dtype).toBe('float32'); expect(variance.shape).toEqual([2]); expect(variance.dtype).toBe('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, mean.data()]; case 1: _b.apply(void 0, [_d.sent(), [2, 1 / 3]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, variance.data()]; case 2: _c.apply(void 0, [_d.sent(), [2 / 3, 0.222]]); return [2 /*return*/]; } }); }); }); it('axis=0,1 in 2D array', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a, mean, variance, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); _a = tf.moments(a, [0, 1]), mean = _a.mean, variance = _a.variance; expect(mean.shape).toEqual([]); expect(mean.dtype).toBe('float32'); expect(variance.shape).toEqual([]); expect(variance.dtype).toBe('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, mean.data()]; case 1: _b.apply(void 0, [_d.sent(), [7 / 6]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, variance.data()]; case 2: _c.apply(void 0, [_d.sent(), [1.1389]]); return [2 /*return*/]; } }); }); }); it('throws when passed a non-tensor', function () { expect(function () { return tf.moments({}); }) .toThrowError(/Argument 'x' passed to 'moments' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var _a, mean, variance, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: _a = tf.moments([1, 2, 3, 0, 0, 1]), mean = _a.mean, variance = _a.variance; expect(mean.dtype).toBe('float32'); expect(variance.dtype).toBe('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, mean.data()]; case 1: _b.apply(void 0, [_d.sent(), 7 / 6]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, variance.data()]; case 2: _c.apply(void 0, [_d.sent(), 1.1389]); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('norm', jasmine_util_1.ALL_ENVS, function () { it('scalar norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.scalar(-22.0); norm = tf.norm(a); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), 22]); return [2 /*return*/]; } }); }); }); it('vector inf norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, -2, 3, -4]); norm = tf.norm(a, Infinity); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), 4]); return [2 /*return*/]; } }); }); }); it('vector -inf norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, -2, 3, -4]); norm = tf.norm(a, -Infinity); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), 1]); return [2 /*return*/]; } }); }); }); it('vector 1 norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, -2, 3, -4]); norm = tf.norm(a, 1); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), 10]); return [2 /*return*/]; } }); }); }); it('vector euclidean norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, -2, 3, -4]); norm = tf.norm(a, 'euclidean'); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), 5.4772]); return [2 /*return*/]; } }); }); }); it('vector 2-norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, -2, 3, -4]); norm = tf.norm(a, 2); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), 5.4772]); return [2 /*return*/]; } }); }); }); it('vector >2-norm to throw error', function () { var a = tf.tensor1d([1, -2, 3, -4]); expect(function () { return tf.norm(a, 3); }).toThrowError(); }); it('matrix inf norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, -3, 1, 0, 1], [3, 2]); norm = tf.norm(a, Infinity, [0, 1]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), 4]); return [2 /*return*/]; } }); }); }); it('matrix -inf norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, -3, 1, 0, 1], [3, 2]); norm = tf.norm(a, -Infinity, [0, 1]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), 1]); return [2 /*return*/]; } }); }); }); it('matrix 1 norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, -3, 1, 1, 1], [3, 2]); norm = tf.norm(a, 1, [0, 1]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), 5]); return [2 /*return*/]; } }); }); }); it('matrix euclidean norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, -3, 1, 1, 1], [3, 2]); norm = tf.norm(a, 'euclidean', [0, 1]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), 4.123]); return [2 /*return*/]; } }); }); }); it('matrix fro norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, -3, 1, 1, 1], [3, 2]); norm = tf.norm(a, 'fro', [0, 1]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), 4.123]); return [2 /*return*/]; } }); }); }); it('matrix other norm to throw error', function () { var a = tf.tensor2d([1, 2, -3, 1, 1, 1], [3, 2]); expect(function () { return tf.norm(a, 2, [0, 1]); }).toThrowError(); }); it('propagates NaNs for norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, NaN, 0, 1], [3, 2]); norm = tf.norm(a); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), NaN]); return [2 /*return*/]; } }); }); }); it('axis=null in 2D array norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); norm = tf.norm(a, Infinity); expect(norm.shape).toEqual([]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), [3]]); return [2 /*return*/]; } }); }); }); it('2D array norm with keep dim', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); norm = tf.norm(a, Infinity, null, true /* keepDims */); expect(norm.shape).toEqual([1, 1]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), [3]]); return [2 /*return*/]; } }); }); }); it('axis=0 in 2D array norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); norm = tf.norm(a, Infinity, [0]); expect(norm.shape).toEqual([2]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, 2]]); return [2 /*return*/]; } }); }); }); it('axis=1 in 2D array norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); norm = tf.norm(a, Infinity, [1]); expect(norm.dtype).toBe('float32'); expect(norm.shape).toEqual([3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 3, 1]]); return [2 /*return*/]; } }); }); }); it('axis=1 keepDims in 2D array norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); norm = tf.norm(a, Infinity, [1], true); expect(norm.dtype).toBe('float32'); expect(norm.shape).toEqual([3, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 3, 1]]); return [2 /*return*/]; } }); }); }); it('2D norm with axis=1 provided as number', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [2, 3]); norm = tf.norm(a, Infinity, 1); expect(norm.shape).toEqual([2]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, 1]]); return [2 /*return*/]; } }); }); }); it('axis=0,1 in 2D array norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); norm = tf.norm(a, Infinity, [0, 1]); expect(norm.shape).toEqual([]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), [3]]); return [2 /*return*/]; } }); }); }); it('axis=0,1 keepDims in 2D array norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 0, 0, 1], [3, 2]); norm = tf.norm(a, Infinity, [0, 1], true); expect(norm.shape).toEqual([1, 1]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), [3]]); return [2 /*return*/]; } }); }); }); it('3D norm axis=0,1, matrix inf norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor3d([1, 2, -3, 1, 0, 1], [3, 2, 1]); norm = tf.norm(a, Infinity, [0, 1]); expect(norm.shape).toEqual([1]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), [4]]); return [2 /*return*/]; } }); }); }); it('axis=0,1 keepDims in 3D array norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor3d([1, 2, 3, 0, 0, 1], [3, 2, 1]); norm = tf.norm(a, Infinity, [0, 1], true); expect(norm.shape).toEqual([1, 1, 1]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), [3]]); return [2 /*return*/]; } }); }); }); it('axis=0,1 keepDims in 3D array norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor3d([1, 2, 3, 0, 0, 1, 1, 2, 3, 0, 0, 1], [3, 2, 2]); norm = tf.norm(a, Infinity, [0, 1], true); expect(norm.shape).toEqual([1, 1, 2]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), [4, 3]]); return [2 /*return*/]; } }); }); }); it('axis=null in 3D array norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor3d([1, 2, 3, 0, 0, 1], [3, 2, 1]); norm = tf.norm(a, Infinity); expect(norm.shape).toEqual([]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), [3]]); return [2 /*return*/]; } }); }); }); it('axis=null in 4D array norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor4d([1, 2, 3, 0, 0, 1], [3, 2, 1, 1]); norm = tf.norm(a, Infinity); expect(norm.shape).toEqual([]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), [3]]); return [2 /*return*/]; } }); }); }); it('axis=0,1 in 4D array norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor4d([ 1, 2, 3, 0, 0, 1, 1, 2, 3, 0, 0, 1, 1, 2, 3, 0, 0, 1, 1, 2, 3, 0, 0, 1 ], [3, 2, 2, 2]); norm = tf.norm(a, Infinity, [0, 1]); expect(norm.shape).toEqual([2, 2]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), [4, 3, 4, 3]]); return [2 /*return*/]; } }); }); }); it('axis=0,1 in 4D array norm', function () { return __awaiter(_this, void 0, void 0, function () { var a, norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor4d([ 1, 2, 3, 0, 0, 1, 1, 2, 3, 0, 0, 1, 1, 2, 3, 0, 0, 1, 1, 2, 3, 0, 0, 1 ], [3, 2, 2, 2]); norm = tf.norm(a, Infinity, [0, 1], true); expect(norm.shape).toEqual([1, 1, 2, 2]); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), [4, 3, 4, 3]]); return [2 /*return*/]; } }); }); }); it('throws when passed a non-tensor', function () { expect(function () { return tf.norm({}); }) .toThrowError(/Argument 'x' passed to 'norm' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var norm, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: norm = tf.norm([1, -2, 3, -4], 1); expect(norm.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, norm.data()]; case 1: _a.apply(void 0, [_b.sent(), 10]); return [2 /*return*/]; } }); }); }); it('throws error for string tensors', function () { expect(function () { return tf.norm([ 'a', 'b' ]); }).toThrowError(/Argument 'x' passed to 'norm' must be numeric tensor/); }); }); jasmine_util_1.describeWithFlags('all', jasmine_util_1.ALL_ENVS, function () { it('Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor1d([0, 0, 0], 'bool'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.all(a).data()]; case 1: _a.apply(void 0, [_d.sent(), 0]); a = tf.tensor1d([1, 0, 1], 'bool'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, tf.all(a).data()]; case 2: _b.apply(void 0, [_d.sent(), 0]); a = tf.tensor1d([1, 1, 1], 'bool'); _c = test_util_1.expectArraysClose; return [4 /*yield*/, tf.all(a).data()]; case 3: _c.apply(void 0, [_d.sent(), 1]); return [2 /*return*/]; } }); }); }); it('ignores NaNs', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, NaN, 1], 'bool'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, tf.all(a).data()]; case 1: _a.apply(void 0, [_b.sent(), 1]); return [2 /*return*/]; } }); }); }); it('2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 1, 0, 0], [2, 2], 'bool'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.all(a).data()]; case 1: _a.apply(void 0, [_b.sent(), 0]); return [2 /*return*/]; } }); }); }); it('2D axis=[0,1]', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 1, 0, 0, 1, 0], [2, 3], 'bool'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.all(a, [0, 1]).data()]; case 1: _a.apply(void 0, [_b.sent(), 0]); return [2 /*return*/]; } }); }); }); it('2D, axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: a = tf.tensor2d([1, 1, 0, 0], [2, 2], 'bool'); r = tf.all(a, 0); expect(r.shape).toEqual([2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_c.sent(), [0, 0]]); r = tf.all(a, 1); expect(r.shape).toEqual([2]); _b = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 2: _b.apply(void 0, [_c.sent(), [1, 0]]); return [2 /*return*/]; } }); }); }); it('2D, axis=0, keepDims', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 1, 0, 0, 1, 0], [2, 3], 'bool'); r = a.all(0, true /* keepDims */); expect(r.shape).toEqual([1, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 1, 0]]); return [2 /*return*/]; } }); }); }); it('2D, axis=1 provided as a number', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 1, 0, 0, 1, 0], [2, 3], 'bool'); r = tf.all(a, 1); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 0]]); return [2 /*return*/]; } }); }); }); it('2D, axis = -1 provided as a number', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 1, 0, 0, 1, 0], [2, 3], 'bool'); r = tf.all(a, -1); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 0]]); return [2 /*return*/]; } }); }); }); it('2D, axis=[1]', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 1, 0, 0, 1, 0], [2, 3], 'bool'); r = tf.all(a, [1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 0]]); return [2 /*return*/]; } }); }); }); it('throws when dtype is not boolean', function () { var a = tf.tensor2d([1, 1, 0, 0], [2, 2]); expect(function () { return tf.all(a); }) .toThrowError(/Argument 'x' passed to 'all' must be bool tensor, but got float/); }); it('throws when passed a non-tensor', function () { expect(function () { return tf.all({}); }) .toThrowError(/Argument 'x' passed to 'all' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = [0, 0, 0]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.all(a).data()]; case 1: _a.apply(void 0, [_b.sent(), 0]); return [2 /*return*/]; } }); }); }); it('throws error for string tensor', function () { expect(function () { return tf.all(['a']); }) .toThrowError(/Argument 'x' passed to 'all' must be bool tensor, but got string/); }); }); jasmine_util_1.describeWithFlags('any', jasmine_util_1.ALL_ENVS, function () { it('Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor1d([0, 0, 0], 'bool'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.any(a).data()]; case 1: _a.apply(void 0, [_d.sent(), 0]); a = tf.tensor1d([1, 0, 1], 'bool'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, tf.any(a).data()]; case 2: _b.apply(void 0, [_d.sent(), 1]); a = tf.tensor1d([1, 1, 1], 'bool'); _c = test_util_1.expectArraysClose; return [4 /*yield*/, tf.any(a).data()]; case 3: _c.apply(void 0, [_d.sent(), 1]); return [2 /*return*/]; } }); }); }); it('ignores NaNs', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, NaN, 0], 'bool'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, tf.any(a).data()]; case 1: _a.apply(void 0, [_b.sent(), 1]); return [2 /*return*/]; } }); }); }); it('2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 1, 0, 0], [2, 2], 'bool'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.any(a).data()]; case 1: _a.apply(void 0, [_b.sent(), 1]); return [2 /*return*/]; } }); }); }); it('2D axis=[0,1]', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 1, 0, 0, 1, 0], [2, 3], 'bool'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.any(a, [0, 1]).data()]; case 1: _a.apply(void 0, [_b.sent(), 1]); return [2 /*return*/]; } }); }); }); it('2D, axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: a = tf.tensor2d([1, 1, 0, 0], [2, 2], 'bool'); r = tf.any(a, 0); expect(r.shape).toEqual([2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_c.sent(), [1, 1]]); r = tf.any(a, 1); expect(r.shape).toEqual([2]); _b = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 2: _b.apply(void 0, [_c.sent(), [1, 0]]); return [2 /*return*/]; } }); }); }); it('2D, axis=0, keepDims', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 1, 0, 0, 1, 0], [2, 3], 'bool'); r = a.any(0, true /* keepDims */); expect(r.shape).toEqual([1, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 1, 0]]); return [2 /*return*/]; } }); }); }); it('2D, axis=1 provided as a number', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 1, 0, 0, 1, 0], [2, 3], 'bool'); r = tf.any(a, 1); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 1]]); return [2 /*return*/]; } }); }); }); it('2D, axis = -1 provided as a number', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 1, 0, 0, 1, 0], [2, 3], 'bool'); r = tf.any(a, -1); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 1]]); return [2 /*return*/]; } }); }); }); it('2D, axis=[1]', function () { return __awaiter(_this, void 0, void 0, function () { var a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 1, 0, 0, 1, 0], [2, 3], 'bool'); r = tf.any(a, [1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 1]]); return [2 /*return*/]; } }); }); }); it('throws when dtype is not boolean', function () { var a = tf.tensor2d([1, 1, 0, 0], [2, 2]); expect(function () { return tf.any(a); }) .toThrowError(/Argument 'x' passed to 'any' must be bool tensor, but got float/); }); it('throws when passed a non-tensor', function () { expect(function () { return tf.any({}); }) .toThrowError(/Argument 'x' passed to 'any' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var a, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = [0, 0, 0]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.any(a).data()]; case 1: _a.apply(void 0, [_b.sent(), 0]); return [2 /*return*/]; } }); }); }); it('throws error for string tensor', function () { expect(function () { return tf.any(['a']); }) .toThrowError(/Argument 'x' passed to 'any' must be bool tensor/); }); }); //# sourceMappingURL=reduction_ops_test.js.map