"use strict"; /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); var engine_1 = require("../engine"); var tensor_util_env_1 = require("../tensor_util_env"); var binary_ops_1 = require("./binary_ops"); var broadcast_util_1 = require("./broadcast_util"); var logical_ops_1 = require("./logical_ops"); var operation_1 = require("./operation"); var selu_util_1 = require("./selu_util"); var tensor_ops_1 = require("./tensor_ops"); /** * Computes rectified linear element-wise: `max(x, 0)`. * * ```js * const x = tf.tensor1d([-1, 2, -3, 4]); * * x.relu().print(); // or tf.relu(x) * ``` * @param x The input tensor. If the dtype is `bool`, the output dtype will be * `int32'. */ /** @doc {heading: 'Operations', subheading: 'Basic math'} */ function relu_(x) { var $x = tensor_util_env_1.convertToTensor(x, 'x', 'relu'); if ($x.dtype === 'bool') { return $x.toInt(); } var grad = function (dy, saved) { var $x = saved[0]; return { x: function () { return dy.mulStrict($x.step().toFloat()); } }; }; return engine_1.ENGINE.runKernelFunc(function (backend, save) { var res = backend.relu($x); save([$x]); return res; }, { x: $x }, grad, 'Relu'); } /** * Computes rectified linear 6 element-wise: `min(max(x, 0), 6)`. * * ```js * const x = tf.tensor1d([-1, 2, -3, 8]); * * x.relu6().print(); // or tf.relu6(x) * ``` * @param x The input tensor. If the dtype is `bool`, the output dtype will be * `int32'. */ /** @doc {heading: 'Operations', subheading: 'Basic math'} */ function relu6_(x) { var $x = tensor_util_env_1.convertToTensor(x, 'x', 'relu6'); if ($x.dtype === 'bool') { return $x.toInt(); } var grad = function (dy, saved) { var $x = saved[0]; var mask = $x.lessEqual(6).mul($x.step()); return { x: function () { return dy.mulStrict(mask.toFloat()); } }; }; return engine_1.ENGINE.runKernelFunc(function (backend, save) { var res = backend.relu6($x); save([$x]); return res; }, { x: $x }, grad, 'Relu6'); } /** * Computes exponential linear element-wise: `x > 0 ? e ^ x - 1 : 0`. * * ```js * const x = tf.tensor1d([-1, 1, -3, 2]); * * x.elu().print(); // or tf.elu(x) * ``` * @param x The input tensor. */ /** @doc {heading: 'Operations', subheading: 'Basic math'} */ function elu_(x) { var $x = tensor_util_env_1.convertToTensor(x, 'x', 'elu'); var grad = function (dy, saved) { var y = saved[0]; return { $x: function () { return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.eluDer(dy, y); }, { dy: dy, y: y }); } }; }; return engine_1.ENGINE.runKernelFunc(function (backend, save) { var y = backend.elu($x); save([y]); return y; }, { $x: $x }, grad); } /** * Computes scaled exponential linear element-wise. * * `x < 0 ? scale * alpha * (exp(x) - 1) : x` * * ```js * const x = tf.tensor1d([-1, 2, -3, 4]); * * x.selu().print(); // or tf.selu(x) * ``` * @param x The input tensor. */ /** @doc {heading: 'Operations', subheading: 'Basic math'} */ function selu_(x) { var $x = tensor_util_env_1.convertToTensor(x, 'x', 'selu'); var grad = function (dy, saved) { var $x = saved[0]; return { $x: function () { var mask = $x.greater(tensor_ops_1.scalar(0)); var scaleAlpha = tensor_ops_1.scalar(selu_util_1.SELU_SCALEALPHA); var scale = tensor_ops_1.scalar(selu_util_1.SELU_SCALE); var greaterThanZeroDer = dy.mul(scale); var lessEqualZeroDer = dy.mul(scaleAlpha).mul($x.toFloat().exp()); return logical_ops_1.where(mask, greaterThanZeroDer, lessEqualZeroDer); } }; }; return engine_1.ENGINE.runKernelFunc(function (backend, save) { var res = backend.selu($x); save([$x]); return res; }, { $x: $x }, grad); } /** * Computes leaky rectified linear element-wise. * * See * [http://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf]( * http://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf) * * ```js * const x = tf.tensor1d([-1, 2, -3, 4]); * * x.leakyRelu(0.1).print(); // or tf.leakyRelu(x, 0.1) * ``` * @param x The input tensor. * @param alpha The scaling factor for negative values, defaults to 0.2. */ /** @doc {heading: 'Operations', subheading: 'Basic math'} */ function leakyRelu_(x, alpha) { if (alpha === void 0) { alpha = 0.2; } var $x = tensor_util_env_1.convertToTensor(x, 'x', 'leakyRelu'); return binary_ops_1.maximum(tensor_ops_1.scalar(alpha).mul($x), $x); } /** * Computes leaky rectified linear element-wise with parametric alphas. * * `x < 0 ? alpha * x : f(x) = x` * * ```js * const x = tf.tensor1d([-1, 2, -3, 4]); * const alpha = tf.scalar(0.1); * * x.prelu(alpha).print(); // or tf.prelu(x, alpha) * ``` * @param x The input tensor. * @param alpha Scaling factor for negative values. */ /** @doc {heading: 'Operations', subheading: 'Basic math'} */ function prelu_(x, alpha) { var $x = tensor_util_env_1.convertToTensor(x, 'x', 'prelu'); var $alpha = tensor_util_env_1.convertToTensor(alpha, 'alpha', 'prelu'); var grad = function (dy, saved) { var $x = saved[0], $alpha = saved[1]; var mask = $x.greater(0); return { x: function () { return logical_ops_1.where(mask, dy, dy.mul($alpha)); }, alpha: function () { var res = logical_ops_1.where(mask, tensor_ops_1.zerosLike(dy), dy.mul($x)); var reduceAxes = broadcast_util_1.getReductionAxes($alpha.shape, dy.shape); if (reduceAxes.length > 0) { res = res.sum(reduceAxes); } return res.reshape($alpha.shape); } }; }; return engine_1.ENGINE.runKernelFunc(function (backend, save) { var res = backend.prelu($x, $alpha); save([$x, $alpha]); return res; }, { x: $x, alpha: $alpha }, grad, 'Prelu'); } exports.elu = operation_1.op({ elu_: elu_ }); exports.leakyRelu = operation_1.op({ leakyRelu_: leakyRelu_ }); exports.prelu = operation_1.op({ prelu_: prelu_ }); exports.relu = operation_1.op({ relu_: relu_ }); exports.relu6 = operation_1.op({ relu6_: relu6_ }); exports.selu = operation_1.op({ selu_: selu_ }); //# sourceMappingURL=relu_ops.js.map