"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('scatterND', jasmine_util_1.ALL_ENVS, function () { it('should work for 2d', function () { return __awaiter(_this, void 0, void 0, function () { var indices, updates, shape, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: indices = tf.tensor1d([0, 4, 2], 'int32'); updates = tf.tensor2d([100, 101, 102, 777, 778, 779, 1000, 1001, 1002], [3, 3], 'int32'); shape = [5, 3]; result = tf.scatterND(indices, updates, shape); expect(result.shape).toEqual(shape); expect(result.dtype).toEqual(updates.dtype); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [100, 101, 102, 0, 0, 0, 1000, 1001, 1002, 0, 0, 0, 777, 778, 779]]); return [2 /*return*/]; } }); }); }); it('should work for simple 1d', function () { return __awaiter(_this, void 0, void 0, function () { var indices, updates, shape, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: indices = tf.tensor1d([3], 'int32'); updates = tf.tensor1d([101], 'float32'); shape = [5]; result = tf.scatterND(indices, updates, shape); expect(result.shape).toEqual(shape); expect(result.dtype).toEqual(updates.dtype); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 0, 0, 101, 0]]); return [2 /*return*/]; } }); }); }); it('should work for multiple 1d', function () { return __awaiter(_this, void 0, void 0, function () { var indices, updates, shape, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: indices = tf.tensor1d([0, 4, 2], 'int32'); updates = tf.tensor1d([100, 101, 102], 'float32'); shape = [5]; result = tf.scatterND(indices, updates, shape); expect(result.shape).toEqual(shape); expect(result.dtype).toEqual(updates.dtype); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [100, 0, 102, 0, 101]]); return [2 /*return*/]; } }); }); }); it('should work for high rank updates', function () { return __awaiter(_this, void 0, void 0, function () { var indices, updates, shape, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: indices = tf.tensor2d([0, 2], [2, 1], 'int32'); updates = tf.tensor3d([ 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8 ], [2, 4, 4], 'float32'); shape = [4, 4, 4]; result = tf.scatterND(indices, updates, shape); expect(result.shape).toEqual(shape); expect(result.dtype).toEqual(updates.dtype); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]]); return [2 /*return*/]; } }); }); }); it('should work for high rank indices', function () { return __awaiter(_this, void 0, void 0, function () { var indices, updates, shape, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: indices = tf.tensor2d([0, 2, 0, 1], [2, 2], 'int32'); updates = tf.tensor1d([10, 20], 'float32'); shape = [3, 3]; result = tf.scatterND(indices, updates, shape); expect(result.shape).toEqual(shape); expect(result.dtype).toEqual(updates.dtype); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 20, 10, 0, 0, 0, 0, 0, 0]]); return [2 /*return*/]; } }); }); }); it('should work for high rank indices and update', function () { var indices = tf.tensor2d([1, 0, 0, 1, 0, 1], [3, 2], 'int32'); var updates = tf.ones([3, 256], 'float32'); var shape = [2, 2, 256]; var result = tf.scatterND(indices, updates, shape); expect(result.shape).toEqual(shape); expect(result.dtype).toEqual(updates.dtype); }); it('should sum the duplicated indices', function () { return __awaiter(_this, void 0, void 0, function () { var indices, updates, shape, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: indices = tf.tensor1d([0, 4, 2, 1, 3, 0], 'int32'); updates = tf.tensor1d([10, 20, 30, 40, 50, 60], 'float32'); shape = [8]; result = tf.scatterND(indices, updates, shape); expect(result.shape).toEqual(shape); expect(result.dtype).toEqual(updates.dtype); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [70, 40, 30, 50, 20, 0, 0, 0]]); return [2 /*return*/]; } }); }); }); it('should work for tensorLike input', function () { return __awaiter(_this, void 0, void 0, function () { var indices, updates, shape, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: indices = [0, 4, 2]; updates = [100, 101, 102]; shape = [5]; result = tf.scatterND(indices, updates, shape); expect(result.shape).toEqual(shape); expect(result.dtype).toEqual('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [100, 0, 102, 0, 101]]); return [2 /*return*/]; } }); }); }); it('should throw error when indices type is not int32', function () { var indices = tf.tensor2d([0, 2, 0, 1], [2, 2], 'float32'); var updates = tf.tensor1d([10, 20], 'float32'); var shape = [3, 3]; expect(function () { return tf.scatterND(indices, updates, shape); }).toThrow(); }); it('should throw error when indices and update mismatch', function () { var indices = tf.tensor2d([0, 4, 2], [3, 1], 'int32'); var updates = tf.tensor2d([100, 101, 102, 103, 777, 778, 779, 780, 10000, 10001, 10002, 10004], [3, 4], 'float32'); var shape = [5, 3]; expect(function () { return tf.scatterND(indices, updates, shape); }).toThrow(); }); it('should throw error when indices and update count mismatch', function () { var indices = tf.tensor2d([0, 4, 2], [3, 1], 'int32'); var updates = tf.tensor2d([100, 101, 102, 10000, 10001, 10002], [2, 3], 'float32'); var shape = [5, 3]; expect(function () { return tf.scatterND(indices, updates, shape); }).toThrow(); }); it('should throw error when indices are scalar', function () { var indices = tf.scalar(1, 'int32'); var updates = tf.tensor2d([100, 101, 102, 10000, 10001, 10002], [2, 3], 'float32'); var shape = [5, 3]; expect(function () { return tf.scatterND(indices, updates, shape); }).toThrow(); }); it('should throw error when update is scalar', function () { var indices = tf.tensor2d([0, 4, 2], [3, 1], 'int32'); var updates = tf.scalar(1, 'float32'); var shape = [5, 3]; expect(function () { return tf.scatterND(indices, updates, shape); }).toThrow(); }); }); //# sourceMappingURL=scatter_nd_test.js.map