"use strict"; /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); var operation_1 = require("../ops/operation"); var binary_ops_1 = require("./binary_ops"); var concat_split_1 = require("./concat_split"); var slice_1 = require("./slice"); var spectral_ops_1 = require("./spectral_ops"); var tensor_ops_1 = require("./tensor_ops"); /** * Generate a Hann window. * * See: https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows * * ```js * tf.signal.hannWindow(10).print(); * ``` * @param The length of window */ /** * @doc {heading: 'Operations', subheading: 'Signal', namespace: 'signal'} */ function hannWindow_(windowLength) { return cosineWindow(windowLength, 0.5, 0.5); } /** * Generate a hamming window. * * See: https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows * * ```js * tf.signal.hammingWindow(10).print(); * ``` * @param The length of window */ /** * @doc {heading: 'Operations', subheading: 'Signal', namespace: 'signal'} */ function hammingWindow_(windowLength) { return cosineWindow(windowLength, 0.54, 0.46); } /** * Expands input into frames of frameLength. * Slides a window size with frameStep. * * ```js * tf.signal.frame([1, 2, 3], 2, 1).print(); * ``` * @param signal The input tensor to be expanded * @param frameLength Length of each frame * @param frameStep The frame hop size in samples. * @param padEnd Whether to pad the end of signal with padValue. * @param padValue An number to use where the input signal does * not exist when padEnd is True. */ /** * @doc {heading: 'Operations', subheading: 'Signal', namespace: 'signal'} */ function frame_(signal, frameLength, frameStep, padEnd, padValue) { if (padEnd === void 0) { padEnd = false; } if (padValue === void 0) { padValue = 0; } var start = 0; var output = []; while (start + frameLength <= signal.size) { output.push(slice_1.slice(signal, start, frameLength)); start += frameStep; } if (padEnd) { while (start < signal.size) { var padLen = (start + frameLength) - signal.size; var pad = concat_split_1.concat([slice_1.slice(signal, start, frameLength - padLen), tensor_ops_1.fill([padLen], padValue)]); output.push(pad); start += frameStep; } } if (output.length === 0) { return tensor_ops_1.tensor2d([], [0, frameLength]); } return concat_split_1.concat(output).as2D(output.length, frameLength); } /** * Computes the Short-time Fourier Transform of signals * See: https://en.wikipedia.org/wiki/Short-time_Fourier_transform * * ```js * const input = tf.tensor1d([1, 1, 1, 1, 1]) * tf.signal.stft(input, 3, 1).print(); * ``` * @param signal 1-dimensional real value tensor. * @param frameLength The window length of samples. * @param frameStep The number of samples to step. * @param fftLength The size of the FFT to apply. * @param windowFn A callable that takes a window length and returns 1-d tensor. */ /** * @doc {heading: 'Operations', subheading: 'Signal', namespace: 'signal'} */ function stft_(signal, frameLength, frameStep, fftLength, windowFn) { if (windowFn === void 0) { windowFn = exports.hannWindow; } if (fftLength == null) { fftLength = enclosingPowerOfTwo(frameLength); } var framedSignal = exports.frame(signal, frameLength, frameStep); var windowedSignal = binary_ops_1.mul(framedSignal, windowFn(frameLength)); var output = []; for (var i = 0; i < framedSignal.shape[0]; i++) { output.push(spectral_ops_1.rfft(windowedSignal.slice([i, 0], [1, frameLength]), fftLength)); } return concat_split_1.concat(output); } function enclosingPowerOfTwo(value) { // Return 2**N for integer N such that 2**N >= value. return Math.floor(Math.pow(2, Math.ceil(Math.log(value) / Math.log(2.0)))); } function cosineWindow(windowLength, a, b) { var even = 1 - windowLength % 2; var newValues = new Float32Array(windowLength); for (var i = 0; i < windowLength; ++i) { var cosArg = (2.0 * Math.PI * i) / (windowLength + even - 1); newValues[i] = a - b * Math.cos(cosArg); } return tensor_ops_1.tensor1d(newValues, 'float32'); } exports.hannWindow = operation_1.op({ hannWindow_: hannWindow_ }); exports.hammingWindow = operation_1.op({ hammingWindow_: hammingWindow_ }); exports.frame = operation_1.op({ frame_: frame_ }); exports.stft = operation_1.op({ stft_: stft_ }); //# sourceMappingURL=signal_ops.js.map