"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); var engine_1 = require("../engine"); var gradients_1 = require("../gradients"); var tensor_util_env_1 = require("../tensor_util_env"); var operation_1 = require("./operation"); /** * Computes the softmax normalized vector given the logits. * * ```js * const a = tf.tensor1d([1, 2, 3]); * * a.softmax().print(); // or tf.softmax(a) * ``` * * ```js * const a = tf.tensor2d([2, 4, 6, 1, 2, 3], [2, 3]); * * a.softmax().print(); // or tf.softmax(a) * ``` * * @param logits The logits array. * @param dim The dimension softmax would be performed on. Defaults to `-1` * which indicates the last dimension. */ /** @doc {heading: 'Operations', subheading: 'Normalization'} */ function softmax_(logits, dim) { if (dim === void 0) { dim = -1; } var $logits = tensor_util_env_1.convertToTensor(logits, 'logits', 'softmax', 'float32'); if (dim === -1) { dim = $logits.rank - 1; } if (dim !== $logits.rank - 1) { throw Error('Softmax along a non-last dimension is not yet supported. ' + ("Logits was rank " + $logits.rank + " and dim was " + dim)); } var inputsToSave = []; var outputsToSave = [true]; return engine_1.ENGINE.runKernelFunc(function (backend, save) { var y = backend.softmax($logits, dim); save([y]); return y; }, { logits: $logits }, function (dy, saved) { var y = saved[0]; var dyTimesY = dy.mul(y); var keepDims = true; return { logits: function () { return dyTimesY.sub(dyTimesY.sum([dim], keepDims).mul(y)); } }; }, 'Softmax', { dim: dim }, inputsToSave, outputsToSave); } /** * Computes the log softmax. * * ```js * const a = tf.tensor1d([1, 2, 3]); * * a.logSoftmax().print(); // or tf.logSoftmax(a) * ``` * * ```js * const a = tf.tensor2d([2, 4, 6, 1, 2, 3], [2, 3]); * * a.logSoftmax().print(); // or tf.logSoftmax(a) * ``` * * @param logits The logits array. * @param axis The dimension softmax would be performed on. Defaults to `-1` * which indicates the last dimension. */ /** @doc {heading: 'Operations', subheading: 'Normalization'} */ function logSoftmax_(logits, axis) { if (axis === void 0) { axis = -1; } var $logits = tensor_util_env_1.convertToTensor(logits, 'logits', 'logSoftmax'); if (axis === -1) { axis = $logits.rank - 1; } if (axis !== $logits.rank - 1) { throw Error('Log Softmax along a non-last dimension is not yet supported. ' + ("Logits was rank " + $logits.rank + " and axis was " + axis)); } var customOp = gradients_1.customGrad(function (logits, save) { var keepDims = true; var xMax = logits.max(axis, true); var shifted = logits.sub(xMax); var value = shifted.toFloat().sub(shifted.exp().sum(axis, keepDims).log()); save([value]); var gradFunc = function (dy, saved) { var value = saved[0]; var softmax = value.exp(); return dy.sub(dy.sum(axis, keepDims).mul(softmax)); }; return { value: value, gradFunc: gradFunc }; }); return customOp($logits); } exports.softmax = operation_1.op({ softmax_: softmax_ }); exports.logSoftmax = operation_1.op({ logSoftmax_: logSoftmax_ }); //# sourceMappingURL=softmax.js.map