"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); var engine_1 = require("../engine"); var sparse_to_dense = require("../ops/sparse_to_dense_util"); var tensor_util_env_1 = require("../tensor_util_env"); var operation_1 = require("./operation"); /** * Converts a sparse representation into a dense tensor. * * Builds an array dense with shape outputShape such that: * * // If sparseIndices is scalar * dense[i] = (i == sparseIndices ? sparseValues : defaultValue) * * // If sparseIndices is a vector, then for each i * dense[sparseIndices[i]] = sparseValues[i] * * // If sparseIndices is an n by d matrix, then for each i in [0, n) * dense[sparseIndices[i][0], ..., sparseIndices[i][d-1]] = sparseValues[i] * All other values in dense are set to defaultValue. If sparseValues is a * scalar, all sparse indices are set to this single value. * * If indices are repeated the final value is summed over all values for those * indices. * * ```js * const indices = tf.tensor1d([4, 5, 6, 1, 2, 3], 'int32'); * const values = tf.tensor1d([10, 11, 12, 13, 14, 15], 'float32'); * const shape = [8]; * tf.sparseToDense(indices, values, shape).print(); * ``` * * @param sparseIndices A 0-D, 1-D, or 2-D Tensor of type int32. * sparseIndices[i] contains the complete index where sparseValues[i] will be * placed. * @param sparseValues A 0-D or 1-D Tensor. Values * corresponding to each row of sparseIndices, or a scalar value to be used for * all sparse indices. * @param outputShape Shape of the dense output tensor. the type is inferred. * @param defaultValue Scalar. Value to set for indices not specified in * sparseIndices. Defaults to zero. */ /** @doc {heading: 'Operations', subheading: 'Normalization'} */ function sparseToDense_(sparseIndices, sparseValues, outputShape, defaultValue) { if (defaultValue === void 0) { defaultValue = 0; } var $sparseIndices = tensor_util_env_1.convertToTensor(sparseIndices, 'sparseIndices', 'sparseToDense', 'int32'); var $sparseValues = tensor_util_env_1.convertToTensor(sparseValues, 'sparseValues', 'sparseToDense'); var $defaultValue = tensor_util_env_1.convertToTensor(defaultValue, 'defaultValue', 'sparseToDense', $sparseValues.dtype); sparse_to_dense.validateInput($sparseIndices, $sparseValues, outputShape, $defaultValue); return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.sparseToDense($sparseIndices, $sparseValues, outputShape, $defaultValue); }, { $sparseIndices: $sparseIndices, $sparseValues: $sparseValues, $defaultValue: $defaultValue }); } exports.sparseToDense = operation_1.op({ sparseToDense_: sparseToDense_ }); //# sourceMappingURL=sparse_to_dense.js.map