"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('AdagradOptimizer', jasmine_util_1.ALL_ENVS, function () { it('basic', function () { return __awaiter(_this, void 0, void 0, function () { var learningRate, initialAccumulatorValue, optimizer, x, f, numTensors, cost, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: learningRate = .1; initialAccumulatorValue = .1; optimizer = tf.train.adagrad(learningRate, initialAccumulatorValue); x = tf.tensor1d([1, 2]).variable(); f = function () { return x.square().sum(); }; numTensors = tf.memory().numTensors; cost = optimizer.minimize(f, /* returnCost */ true); // Cost & accumulator should be the only additional arrays. expect(tf.memory().numTensors).toBe(numTensors + 2); // epsilon = 1-e8 // newAccumulatedGrad = accumulatedGrad + grad^2 // x -= (learningRate * grad) / sqrt(newAccumulatedGrad + eps) // de/dx = [2, 4] // accumulatedGrad = [0.1, 0.1] // newAccumulatedGrad = [4.1, 16.1] // x = [0.9012270405, 1.900311042] _a = test_util_1.expectArraysClose; return [4 /*yield*/, x.data()]; case 1: // epsilon = 1-e8 // newAccumulatedGrad = accumulatedGrad + grad^2 // x -= (learningRate * grad) / sqrt(newAccumulatedGrad + eps) // de/dx = [2, 4] // accumulatedGrad = [0.1, 0.1] // newAccumulatedGrad = [4.1, 16.1] // x = [0.9012270405, 1.900311042] _a.apply(void 0, [_c.sent(), [0.9012270405, 1.9003110428]]); cost.dispose(); numTensors = tf.memory().numTensors; cost = optimizer.minimize(f, /* returnCost */ false); // de/dx = [1.802454081, 3.9501555214] // accumulatedGrad = [4.1, 16.1] // newAccumulatedGrad = [7.3488407141, 31.7037286432] // x = [0.8347372764, 1.83015597828] // TODO: Fix numerical precision. _b = test_util_1.expectArraysClose; return [4 /*yield*/, x.data()]; case 2: // de/dx = [1.802454081, 3.9501555214] // accumulatedGrad = [4.1, 16.1] // newAccumulatedGrad = [7.3488407141, 31.7037286432] // x = [0.8347372764, 1.83015597828] // TODO: Fix numerical precision. _b.apply(void 0, [_c.sent(), [0.8347372764, 1.83015597828], 1e-2]); // There should be no new additional Tensors. expect(tf.memory().numTensors).toBe(numTensors); expect(cost).toBe(null); x.dispose(); optimizer.dispose(); // The only tensor remaining is the argument to variable(). expect(tf.memory().numTensors).toBe(1); return [2 /*return*/]; } }); }); }); it('Continue training after loading weights', function () { return __awaiter(_this, void 0, void 0, function () { var learningRate, initialAccumulatorValue, optimizer1, x, f, cost, _a, weights, optimizer2, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: learningRate = .1; initialAccumulatorValue = .1; optimizer1 = tf.train.adagrad(learningRate, initialAccumulatorValue); x = tf.tensor1d([2, 4]).variable(); f = function () { return x.square().sum(); }; cost = optimizer1.minimize(f, /* returnCost */ true); _a = test_util_1.expectArraysClose; return [4 /*yield*/, cost.data()]; case 1: _a.apply(void 0, [_c.sent(), 20]); return [4 /*yield*/, optimizer1.getWeights()]; case 2: weights = _c.sent(); expect(weights.length).toEqual(2); expect(weights[0].name).toEqual('iter'); expect(weights[1].name).toEqual(x.name + "/accumulator"); optimizer2 = tf.train.adam(learningRate, initialAccumulatorValue); return [4 /*yield*/, optimizer2.setWeights(weights)]; case 3: _c.sent(); cost = optimizer2.minimize(f, /* returnCost */ true); _b = test_util_1.expectArraysClose; return [4 /*yield*/, cost.data()]; case 4: _b.apply(void 0, [_c.sent(), 18.82179]); expect(optimizer2.iterations).toEqual(2); return [2 /*return*/]; } }); }); }); it('serialization round-trip', function () { var originalOpt = tf.train.adagrad(0.1, 0.2); var reserialized = tf.AdagradOptimizer.fromConfig(tf.AdagradOptimizer, originalOpt.getConfig()); expect(reserialized.getConfig()).toEqual(originalOpt.getConfig()); }); }); //# sourceMappingURL=adagrad_optimizer_test.js.map