"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('AdamaxOptimizer', jasmine_util_1.ALL_ENVS, function () { it('basic', function () { return __awaiter(_this, void 0, void 0, function () { var learningRate, beta1, beta2, decay, optimizer, x, f, numTensors, cost, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: learningRate = 0.1; beta1 = 0.8; beta2 = 0.9; decay = 0.1; optimizer = tf.train.adamax(learningRate, beta1, beta2, undefined, decay); x = tf.tensor1d([2, 4]).variable(); f = function () { return x.square().sum(); }; numTensors = tf.memory().numTensors; cost = optimizer.minimize(f, /* returnCost */ true); // Cost & 2 accumulators should be the only additional arrays. expect(tf.memory().numTensors).toBe(numTensors + 3); // new_first_m = [ // beta1 * old_first_m_w1 + (1-beta1) * grad_w1, // beta1 * old_first_m_w2 + (1-beta1) * grad_w2 // ] = [.8, 1.6] // // ut_0 = beta2 * old_weighted_inf_norm = [0, 0] // u1_1 = [ // abs(grad_w1), // abs(grad_w2) // ] = [4, 8] // new_weighted_inf_norm = max(ut_0, ut_1) = [4, 8] // // coefficient = alpha / (1-beta1) = 0.5 // updates = coefficient * [ // new_first_m1 / new_weighted_inf_norm1, // new_first_m2 / new_weighted_inf_norm2 // ] = [0.1, 0.1] // w = [ // w1_old - updates_1, // w2_old - updates_2 // ] = [1.9, 3.9] // _a = test_util_1.expectArraysClose; return [4 /*yield*/, x.data()]; case 1: // new_first_m = [ // beta1 * old_first_m_w1 + (1-beta1) * grad_w1, // beta1 * old_first_m_w2 + (1-beta1) * grad_w2 // ] = [.8, 1.6] // // ut_0 = beta2 * old_weighted_inf_norm = [0, 0] // u1_1 = [ // abs(grad_w1), // abs(grad_w2) // ] = [4, 8] // new_weighted_inf_norm = max(ut_0, ut_1) = [4, 8] // // coefficient = alpha / (1-beta1) = 0.5 // updates = coefficient * [ // new_first_m1 / new_weighted_inf_norm1, // new_first_m2 / new_weighted_inf_norm2 // ] = [0.1, 0.1] // w = [ // w1_old - updates_1, // w2_old - updates_2 // ] = [1.9, 3.9] // _a.apply(void 0, [_c.sent(), [1.9, 3.9]]); cost.dispose(); numTensors = tf.memory().numTensors; cost = optimizer.minimize(f, /* returnCost */ false); // gradient = [3.8, 7.8] // new_first_m = [ // beta1 * old_first_m_w1 + (1-beta1) * grad_w1, // beta1 * old_first_m_w2 + (1-beta1) * grad_w2 // ] = [ // 0.8 * 0.8 + 0.2 * 3.8, // 0.8 * 1.6 + 0.2 * 7.8 // ] = [1.4, 2.84] // // ut_0 = beta2 * old_weighted_inf_norm = [ // 0.9 * 4, // 0.9 * 8 // ] = [3.6, 7.2] // u1_1 = [ // abs(grad_w1), // abs(grad_w2) // ] = [3.8, 7.8] // new_weighted_inf_norm = max(ut_0, ut_1) = [3.8, 7.8] // // alpha = 0.1 / (1 + 0.1 * 1) = 0.0909090909 // // coefficient = alpha / (1 - beta1*beta1) = 0.25252525 // updates = coefficient * [ // new_first_m1 / new_weighted_inf_norm1, // new_first_m2 / new_weighted_inf_norm2 // ] = [0.09303, 0.09194] // w = [ // w1_old - updates_1, // w2_old - updates_2 // ] = [1.80697, 3.8086] // _b = test_util_1.expectArraysClose; return [4 /*yield*/, x.data()]; case 2: // gradient = [3.8, 7.8] // new_first_m = [ // beta1 * old_first_m_w1 + (1-beta1) * grad_w1, // beta1 * old_first_m_w2 + (1-beta1) * grad_w2 // ] = [ // 0.8 * 0.8 + 0.2 * 3.8, // 0.8 * 1.6 + 0.2 * 7.8 // ] = [1.4, 2.84] // // ut_0 = beta2 * old_weighted_inf_norm = [ // 0.9 * 4, // 0.9 * 8 // ] = [3.6, 7.2] // u1_1 = [ // abs(grad_w1), // abs(grad_w2) // ] = [3.8, 7.8] // new_weighted_inf_norm = max(ut_0, ut_1) = [3.8, 7.8] // // alpha = 0.1 / (1 + 0.1 * 1) = 0.0909090909 // // coefficient = alpha / (1 - beta1*beta1) = 0.25252525 // updates = coefficient * [ // new_first_m1 / new_weighted_inf_norm1, // new_first_m2 / new_weighted_inf_norm2 // ] = [0.09303, 0.09194] // w = [ // w1_old - updates_1, // w2_old - updates_2 // ] = [1.80697, 3.8086] // _b.apply(void 0, [_c.sent(), [1.80697, 3.8086]]); // There should be no new additional Tensors. expect(tf.memory().numTensors).toBe(numTensors); expect(cost).toBe(null); x.dispose(); optimizer.dispose(); // The only tensor remaining should be the argument to variable(). expect(tf.memory().numTensors).toBe(1); return [2 /*return*/]; } }); }); }); it('serialization round-trip', function () { var originalOpt = tf.train.adamax(0.1, 0.2, 0.3, 2e-8, 0.1); var reserialized = tf.AdamaxOptimizer.fromConfig(tf.AdamaxOptimizer, originalOpt.getConfig()); expect(reserialized.getConfig()).toEqual(originalOpt.getConfig()); }); }); //# sourceMappingURL=adamax_optimizer_test.js.map