"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('MomentumOptimizer', jasmine_util_1.ALL_ENVS, function () { it('basic', function () { return __awaiter(_this, void 0, void 0, function () { var learningRate, momentum, optimizer, x, f, numTensors, cost, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: learningRate = .1; momentum = .5; optimizer = tf.train.momentum(learningRate, momentum); x = tf.tensor1d([1, 2]).variable(); f = function () { return x.square().sum(); }; numTensors = tf.memory().numTensors; cost = optimizer.minimize(f, /* returnCost */ true); // Cost & velocity should be the only additional arrays. expect(tf.memory().numTensors).toBe(numTensors + 2); // newAccumulation = momentum * accumulation + gradient // newVariable += -learningRate * newAccumulation + variable // // de/dx = [2, 4] // newAccumulation = [2, 4] // x = [.8, 1.6] _a = test_util_1.expectArraysClose; return [4 /*yield*/, x.data()]; case 1: // newAccumulation = momentum * accumulation + gradient // newVariable += -learningRate * newAccumulation + variable // // de/dx = [2, 4] // newAccumulation = [2, 4] // x = [.8, 1.6] _a.apply(void 0, [_c.sent(), [.8, 1.6]]); cost.dispose(); numTensors = tf.memory().numTensors; cost = optimizer.minimize(f, /* returnCost */ false); // de/dx = [1.6, 3.2] // accumulation = [2, 4] // newAccumulation = [2.6, 5.2] // x = [0.54, 1.08] _b = test_util_1.expectArraysClose; return [4 /*yield*/, x.data()]; case 2: // de/dx = [1.6, 3.2] // accumulation = [2, 4] // newAccumulation = [2.6, 5.2] // x = [0.54, 1.08] _b.apply(void 0, [_c.sent(), [0.54, 1.08]]); // There should be no new additional Tensors. expect(tf.memory().numTensors).toBe(numTensors); expect(cost).toBe(null); x.dispose(); numTensors = tf.memory().numTensors; optimizer.dispose(); // The optimizer.dispose() call should have disposed the m variable and the // momentum variable for x. expect(tf.memory().numTensors).toBe(numTensors - 2); return [2 /*return*/]; } }); }); }); it('basic - with Nesterov', function () { return __awaiter(_this, void 0, void 0, function () { var learningRate, momentum, useNesterov, optimizer, x, f, numTensors, cost, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: learningRate = .1; momentum = .5; useNesterov = true; optimizer = tf.train.momentum(learningRate, momentum, useNesterov); x = tf.tensor1d([1, 2]).variable(); f = function () { return x.square().sum(); }; numTensors = tf.memory().numTensors; cost = optimizer.minimize(f, /* returnCost */ true); // Cost and velocity should be the only additional arrays. expect(tf.memory().numTensors).toBe(numTensors + 2); // newAccumulation = momentum * accumulation + gradient // newVariable = -learningRate * (newAccumulation * momentum + gradient) + // variable // // de/dx = [2, 4] // newAccumulation = [2, 4] // newVariable = -0.1 * ([2, 4] * 0.5 + [2, 4]) + [1, 2] // x = [.7, 1.4] _a = test_util_1.expectArraysClose; return [4 /*yield*/, x.data()]; case 1: // newAccumulation = momentum * accumulation + gradient // newVariable = -learningRate * (newAccumulation * momentum + gradient) + // variable // // de/dx = [2, 4] // newAccumulation = [2, 4] // newVariable = -0.1 * ([2, 4] * 0.5 + [2, 4]) + [1, 2] // x = [.7, 1.4] _a.apply(void 0, [_c.sent(), [.7, 1.4]]); cost.dispose(); numTensors = tf.memory().numTensors; cost = optimizer.minimize(f, /* returnCost */ false); // de/dx = [1.4, 2.8] // accumulation = [2, 4] // newAccumulation = [0.5 * 2 + 1.4, 0.5 * 4 + 2.8] = [2.4, 4.8] // newVariable = -0.1 * ([2.4, 4.8] * 0.5 + [1.4, 2.8]) + [0.7, 1.4] // x = [0.44, 0.88] _b = test_util_1.expectArraysClose; return [4 /*yield*/, x.data()]; case 2: // de/dx = [1.4, 2.8] // accumulation = [2, 4] // newAccumulation = [0.5 * 2 + 1.4, 0.5 * 4 + 2.8] = [2.4, 4.8] // newVariable = -0.1 * ([2.4, 4.8] * 0.5 + [1.4, 2.8]) + [0.7, 1.4] // x = [0.44, 0.88] _b.apply(void 0, [_c.sent(), [0.44, 0.88]]); // There should be no new additional Tensors. expect(tf.memory().numTensors).toBe(numTensors); expect(cost).toBe(null); x.dispose(); numTensors = tf.memory().numTensors; optimizer.dispose(); // The optimizer.dispose() call should have disposed the m variable and the // momentum variable for x. expect(tf.memory().numTensors).toBe(numTensors - 2); return [2 /*return*/]; } }); }); }); it('Save, load weights and conntinue training', function () { return __awaiter(_this, void 0, void 0, function () { var learningRate, momentum, useNesterov, optimizer1, x, f, cost, optimizer2, _a, _b, _c, _d; return __generator(this, function (_e) { switch (_e.label) { case 0: learningRate = .1; momentum = .5; useNesterov = true; optimizer1 = tf.train.momentum(learningRate, momentum, useNesterov); x = tf.tensor1d([1, 2]).variable(); f = function () { return x.square().sum(); }; cost = optimizer1.minimize(f, /* returnCost */ true); optimizer2 = tf.train.momentum(learningRate, momentum, useNesterov); _b = (_a = optimizer2).setWeights; return [4 /*yield*/, optimizer1.getWeights()]; case 1: return [4 /*yield*/, _b.apply(_a, [_e.sent()])]; case 2: _e.sent(); cost = optimizer2.minimize(f, /* returnCost */ true); _c = test_util_1.expectArraysClose; return [4 /*yield*/, cost.data()]; case 3: _c.apply(void 0, [_e.sent(), 2.45]); _d = test_util_1.expectArraysClose; return [4 /*yield*/, x.data()]; case 4: _d.apply(void 0, [_e.sent(), [0.44, 0.88]]); expect(optimizer2.iterations).toEqual(2); return [2 /*return*/]; } }); }); }); it('serialization round-trip', function () { var originalOpt = tf.train.momentum(0.1, 0.2, true); var reserialized = tf.MomentumOptimizer.fromConfig(tf.MomentumOptimizer, originalOpt.getConfig()); expect(reserialized.getConfig()).toEqual(originalOpt.getConfig()); }); }); //# sourceMappingURL=momentum_optimizer_test.js.map