"use strict"; /** * @license * Copyright 2017 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("./index"); var jasmine_util_1 = require("./jasmine_util"); var ops_1 = require("./ops/ops"); var tape_1 = require("./tape"); var test_util_1 = require("./test_util"); jasmine_util_1.describeWithFlags('getFilteredNodesXToY', jasmine_util_1.ALL_ENVS, function () { it('no paths from x to y', function () { var x = tf.scalar(1); var intermediate1 = tf.scalar(0); var intermediate2 = tf.scalar(0); var y = tf.scalar(2); var tape = [ { id: 0, kernelName: 'node0', inputs: { x: x }, outputs: [intermediate1], gradient: null }, { id: 1, kernelName: 'node1', inputs: { intermediate2: intermediate2 }, outputs: [y], gradient: null } ]; var filteredTapeNodes = tape_1.getFilteredNodesXToY(tape, [x], y); expect(filteredTapeNodes.length).toBe(0); expect(filteredTapeNodes).toEqual([]); }); it('one operation x => y', function () { var x = tf.scalar(1); var y = tf.scalar(2); var tape = [ { id: 0, kernelName: 'node0', inputs: { x: x }, outputs: [y], gradient: null } ]; var filteredTapeNodes = tape_1.getFilteredNodesXToY(tape, [x], y); expect(filteredTapeNodes.length).toBe(1); expect(filteredTapeNodes).toEqual(tape); }); it('1 operation [x0, x1] => y, all input paths', function () { var x0 = tf.scalar(0); var x1 = tf.scalar(1); var y = tf.scalar(2); var tape = [{ id: 0, kernelName: 'node0', inputs: { x0: x0, x1: x1 }, outputs: [y], gradient: null }]; var filteredTapeNodes = tape_1.getFilteredNodesXToY(tape, [x0, x1], y); expect(filteredTapeNodes.length).toBe(1); expect(filteredTapeNodes).toEqual(tape); }); it('one operation [x0, x1] => y, one input paths', function () { var x0 = tf.scalar(0); var x1 = tf.scalar(1); var y = tf.scalar(2); var tape = [{ id: 0, kernelName: 'node0', inputs: { x0: x0, x1: x1 }, outputs: [y], gradient: null }]; var filteredTapeNodes = tape_1.getFilteredNodesXToY(tape, [x0], y); expect(filteredTapeNodes.length).toBe(1); // x1 input should be pruned, we don't ask for the gradient of x1. expect(filteredTapeNodes[0]).toEqual({ id: 0, kernelName: 'node0', inputs: { x0: x0 }, outputs: [y], gradient: null }); }); it('two operations x => intermediate => y', function () { var x = tf.scalar(1); var intermediate = tf.scalar(0); var y = tf.scalar(2); var tape = [ { id: 0, kernelName: 'node0', inputs: { x: x }, outputs: [intermediate], gradient: null }, { id: 1, kernelName: 'node1', inputs: { intermediate: intermediate }, outputs: [y], gradient: null } ]; var filteredTapeNodes = tape_1.getFilteredNodesXToY(tape, [x], y); expect(filteredTapeNodes.length).toBe(2); expect(filteredTapeNodes).toEqual(tape); }); it('two operations [x0, x1], [x2] => ' + 'intermediate => y', function () { var x0 = tf.scalar(1); var x1 = tf.scalar(2); var x2 = tf.scalar(3); var intermediate = tf.scalar(4); var y = tf.scalar(2); var tape = [ { id: 0, kernelName: 'node0', inputs: { x0: x0, x1: x1 }, outputs: [intermediate], gradient: null }, { id: 1, kernelName: 'node1', inputs: { x2: x2, intermediate: intermediate }, outputs: [y], gradient: null } ]; var filteredTapeNodes = tape_1.getFilteredNodesXToY(tape, [x0, x1, x2], y); expect(filteredTapeNodes.length).toBe(2); expect(filteredTapeNodes).toEqual(tape); }); it('x => y and x => orphan', function () { var x = tf.scalar(1); var orphan = tf.scalar(0); var y = tf.scalar(2); var tape = [ { id: 0, kernelName: 'node0', inputs: { x: x }, outputs: [orphan], gradient: null }, { id: 1, kernelName: 'node1', inputs: { x: x }, outputs: [y], gradient: null } ]; var filteredTapeNodes = tape_1.getFilteredNodesXToY(tape, [x], y); expect(filteredTapeNodes.length).toBe(1); // The orphan should be removed. expect(filteredTapeNodes[0]).toEqual(tape[1]); }); it('x => y and orphan => y', function () { var x = tf.scalar(1); var orphan = tf.scalar(0); var y = tf.scalar(2); var tape = [{ id: 0, kernelName: 'node0', inputs: { x: x, orphan: orphan }, outputs: [y], gradient: null }]; var filteredTapeNodes = tape_1.getFilteredNodesXToY(tape, [x], y); expect(filteredTapeNodes.length).toBe(1); // The orphan should be pruned from the node's input. expect(filteredTapeNodes[0]).toEqual({ id: 0, kernelName: 'node0', inputs: { x: x }, outputs: [y], gradient: null }); }); it('1 op with 3 outputs x => y1, y2, y3', function () { var x = tf.scalar(1); var y1 = tf.scalar(2); var y2 = tf.scalar(2); var y3 = tf.scalar(2); var tape = [{ id: 0, kernelName: 'node0', inputs: { x: x }, outputs: [y1, y2, y3], gradient: null }]; var filteredNodes1 = tape_1.getFilteredNodesXToY(tape, [x], y1); expect(filteredNodes1.length).toBe(1); expect(filteredNodes1).toEqual(tape); var filteredNodes2 = tape_1.getFilteredNodesXToY(tape, [x], y2); expect(filteredNodes2.length).toBe(1); expect(filteredNodes2).toEqual(tape); var filteredNodes3 = tape_1.getFilteredNodesXToY(tape, [x], y3); expect(filteredNodes3.length).toBe(1); expect(filteredNodes3).toEqual(tape); }); }); jasmine_util_1.describeWithFlags('backpropagateGradients', jasmine_util_1.ALL_ENVS, function () { it('Throws if gradient is not defined', function () { var x = tf.scalar(0); var y = tf.scalar(1); var dy = tf.scalar(1); var accumulatedGradientsMap = {}; accumulatedGradientsMap[y.id] = dy; var tape = [ { id: 0, kernelName: 'node0', inputs: { x: x }, outputs: [y], gradient: null } ]; expect(function () { return tape_1.backpropagateGradients(accumulatedGradientsMap, tape, function (f) { return tf.tidy(f); }); }) .toThrowError(); }); it('basic backprop with 1 node', function () { return __awaiter(_this, void 0, void 0, function () { var x, y, dy, accumulatedGradientsMap, tape, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.scalar(0); y = tf.scalar(1); dy = tf.scalar(1); accumulatedGradientsMap = {}; accumulatedGradientsMap[y.id] = dy; tape = [{ id: 0, kernelName: 'node0', inputs: { x: x }, outputs: [y], gradient: function (dys) { return { x: function () { return dys[0].add(tf.scalar(1)); } }; } }]; tape_1.backpropagateGradients(accumulatedGradientsMap, tape, function (f) { return tf.tidy(f); }); _a = test_util_1.expectArraysClose; return [4 /*yield*/, accumulatedGradientsMap[x.id].data()]; case 1: _a.apply(void 0, [_b.sent(), [2]]); return [2 /*return*/]; } }); }); }); it('basic backprop with 2 nodes', function () { return __awaiter(_this, void 0, void 0, function () { var x, intermediate, y, dy, accumulatedGradientsMap, tape, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.scalar(0); intermediate = tf.scalar(1); y = tf.scalar(2); dy = tf.scalar(1); accumulatedGradientsMap = {}; accumulatedGradientsMap[y.id] = dy; tape = [ { id: 0, kernelName: 'node0', inputs: { x: x }, outputs: [intermediate], gradient: function (dys) { return { x: function () { return dys[0].add(tf.scalar(1)); } }; } }, { id: 1, kernelName: 'node1', inputs: { intermediate: intermediate }, outputs: [y], gradient: function (dys) { return { intermediate: function () { return dys[0].add(tf.scalar(1)); } }; } } ]; tape_1.backpropagateGradients(accumulatedGradientsMap, tape, function (f) { return tf.tidy(f); }); // dx = dy + 1 + 1 _a = test_util_1.expectArraysClose; return [4 /*yield*/, accumulatedGradientsMap[x.id].data()]; case 1: // dx = dy + 1 + 1 _a.apply(void 0, [_b.sent(), [3]]); return [2 /*return*/]; } }); }); }); it('basic backprop with a split node accumulates gradients', function () { return __awaiter(_this, void 0, void 0, function () { var x, intermediate1, intermediate2, y, dy, accumulatedGradientsMap, tape, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: x = tf.scalar(0); intermediate1 = tf.scalar(1); intermediate2 = tf.scalar(2); y = tf.scalar(3); dy = tf.scalar(1); accumulatedGradientsMap = {}; accumulatedGradientsMap[y.id] = dy; tape = [ { id: 0, kernelName: 'node0', inputs: { x: x }, outputs: [intermediate1], gradient: function (dys) { return { x: function () { return dys[0].add(tf.scalar(1)); } }; } }, { id: 1, kernelName: 'node1', inputs: { x: x }, outputs: [intermediate2], gradient: function (dys) { return { x: function () { return dys[0].add(tf.scalar(1)); } }; } }, { id: 2, kernelName: 'node2', inputs: { intermediate1: intermediate1, intermediate2: intermediate2 }, outputs: [y], gradient: function (dys) { return { intermediate1: function () { return dys[0].add(tf.scalar(1)); }, intermediate2: function () { return dys[0].add(tf.scalar(1)); } }; } } ]; tape_1.backpropagateGradients(accumulatedGradientsMap, tape, function (f) { return tf.tidy(f); }); // dx = dy + 1 + 1 + 1 + 1 + 1 _a = test_util_1.expectArraysClose; return [4 /*yield*/, accumulatedGradientsMap[x.id].data()]; case 1: _b = [_c.sent()]; return [4 /*yield*/, dy.data()]; case 2: // dx = dy + 1 + 1 + 1 + 1 + 1 _a.apply(void 0, _b.concat([[(_c.sent())[0] + 5]])); return [2 /*return*/]; } }); }); }); it('backprop over 1 node with 3 outputs, w.r.t to the 2nd output', function () { return __awaiter(_this, void 0, void 0, function () { var x, y1, y2, y3, accumulatedGradientsMap, dy2, dys, tape, _a, _b, _c, _d; return __generator(this, function (_e) { switch (_e.label) { case 0: x = tf.tensor1d([1, 1, 1]); y1 = tf.scalar(1); y2 = tf.scalar(1); y3 = tf.scalar(1); accumulatedGradientsMap = {}; dy2 = tf.scalar(5); accumulatedGradientsMap[y2.id] = dy2; tape = [{ id: 0, kernelName: 'node0', inputs: { x: x }, outputs: [y1, y2, y3], gradient: function (dys_) { dys = dys_.map(function (dy) { return dy || ops_1.zerosLike(y1); }); return { x: function () { return tf.stack(dys); } }; } }]; tape_1.backpropagateGradients(accumulatedGradientsMap, tape, function (f) { return tf.tidy(f); }); _a = test_util_1.expectArraysClose; return [4 /*yield*/, accumulatedGradientsMap[x.id].data()]; case 1: _a.apply(void 0, [_e.sent(), [0, 5, 0]]); _b = test_util_1.expectArraysClose; return [4 /*yield*/, dys[0].data()]; case 2: _b.apply(void 0, [_e.sent(), [0]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, dys[1].data()]; case 3: _c.apply(void 0, [_e.sent(), [5]]); _d = test_util_1.expectArraysClose; return [4 /*yield*/, dys[2].data()]; case 4: _d.apply(void 0, [_e.sent(), [0]]); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=tape_test.js.map